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Abstract

In the literature on vagueness one finds two very different kinds of degree theory. The
dominant kind of account of gradable adjectives in formal semantics and linguistics is built
on an underlying framework involving bivalence and classical logic: its degrees are not
degrees of truth. On the other hand, fuzzy logic based theories of vagueness—largely absent
from the formal semantics literature but playing a significant role in both the philosophical
literature on vagueness and in the contemporary logic literature—are logically nonclassical
and give a central role to the idea of degrees of truth. Each kind of degree theory has a
strength: the classical kind allows for rich and subtle analyses of the comparative form of
gradable adjectives and of various types of gradable precise adjectives, while the fuzzy kind
yields a compelling solution to the sorites paradox. This paper argues that the fuzzy kind
of theory can match the benefits of the classical kind and hence that the burden is on the
latter to match the advantages of the former. In particular, we develop a new version of
the fuzzy logic approach that—unlike existing fuzzy theories—yields a compelling analysis
of the comparative as well as an adequate account of gradable precise predicates, while
still retaining the advantage of genuinely solving the sorites paradox.

1 Introduction

This paper looks at two approaches to the semantics of vagueness. Both give a central role
to degrees—yet they are fundamentally different. On the one hand we have degree-based
accounts of the semantics of gradable adjectives. This is the dominant kind of account in
the formal semantics literature.1 On the other hand we have fuzzy logic based theories of

1See e.g. Bartsch and Vennemann [1973], Seuren [1973], Cresswell [1976], Stechow [1984], Bierwisch
[1989], Kennedy [1997], Kennedy and McNally [2005] and Kennedy [2007].
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vagueness. Such theories are largely absent from the formal semantics literature, but play
a significant (although not dominant) role in both the philosophical literature on vagueness
and in the contemporary logic literature.2 The latter approach is, from a logical point of
view, nonclassical. In particular, it gives a central role to the idea of degrees of truth. The
former approach, by contrast, is built on an underlying framework involving bivalence and
classical logic: it gives a central role to degrees, but they are not degrees of truth.

In this paper we note symmetrical challenges for each kind of approach: there is some-
thing that each does well, and the challenge for the other approach is to develop an equally
good way of doing it. What the former, classical approach does well is yield an adequate
analysis of the comparative as well as account for the meaning of various classes of precise
gradable predicates. What the latter, nonclassical approach does well is solve the sorites
paradox. In this paper we shall develop a new version of the fuzzy logic approach that
yields compelling analyses of the comparative form as well as of various types of gradable
precise adjectives, while in turn retaining the advantage of genuinely solving the sorites
paradox. Our overall conclusion is that the new version of the fuzzy theory of vagueness
proposed here fares considerably better than previous fuzzy accounts and that, when it
comes to the sorites, the burden is on the classical approach to show that it can do as well
as the fuzzy approach.

Let us clarify the scope of this paper. First, the argument that fuzzy theories of
vagueness handle the sorites better than other kinds of theory—including the kinds of
classical theory that underly the non-fuzzy degree-based approach to the semantics of
vagueness mentioned above—is presented in full elsewhere [Smith, forthcoming]. In this
paper, we do not repeat the argument in its entirety and we do not consider what we say
in this paper—taken by itself—to constitute a compelling argument that fuzzy theories
of vagueness handle the sorites better than other kinds of theory. Here our aim is more
limited. We sketch just enough of the fuzzy solution to the sorites presented in Smith
[forthcoming] to show that the new version of the fuzzy theory of vagueness proposed in
this paper can still make use of this solution. That is, in moving to a new version of the
fuzzy theory that yields compelling analyses of the comparative form as well as of various
types of gradable precise adjectives, we do not break the solution to the sorites that is
available to the earlier version of the fuzzy theory of vagueness.

Second, as is well-known, fuzzy logics face some important objections. Of course, solv-
ing the sorites and providing semantics for degree constructions found in natural languages
are not the only challenges they face. In fact, they have been the target of significant
scrutiny and criticism well beyond these particular issues. One of these objections points
to its truth-functionality assumption and argues that fuzzy theories do not provide an
adequate account of logically complex sentences. This is done mostly by pointing to al-
leged counterexamples to the consequences of the fuzzy truth functions used to interpret
the connectives. Without going into detail, since this topic falls outside the scope of this
paper and it has been addressed at length elsewhere (Smith [2008] and Smith [2017]),
let us just say that we think there are good replies to this objection. On the one hand,
most of these objections are based on the intuitions of their authors, which can often be
called into doubt. On the other, they often focus on one particular version of fuzzy logic
(what has been called ‘philosophers’ fuzzy logic’), which need not be endorsed. There are
alternatives which lead to more intuitively correct results. This claim, of course, requires
further justification, but we leave it aside in this paper. For more detail, see the references
above. Another important objection claims that fuzzy logic leads to artificial precision,
in the sense that it is artificial or implausible to associate each vague sentence in natural
language with a particular real number between 0 and 1 as its degree of truth and thus
that any choice of interpretation for the atomic sentences of our language is going to be

2See e.g. Goguen [1968–69], Lakoff [1973], Machina [1976] and Smith [2008] on the philosophical side,
and Klir and Yuan [1995], Hájek [1998], Novák et al. [1999], Nguyen and Walker [2000] and Cintula et al.
[2011 and 2015] on the logical side.
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unwarranted. Once again, and without going into details since this, too, has been tackled
elsewhere [Smith, 2008], we think there is a good solution to this problem: endorse a form
of plurivaluationism. The idea is that the problem of artificial precision does not arise from
the fuzzy component of fuzzy theories, but rather because of their assumption that there
is only one unique correct model for our language. Drop this assumption and the problem
dissipates. What abandoning the assumption of uniqueness amounts to is the acceptance
that any discourse has not one but multiple equally correct fuzzy models. These models
must all be compatible with our linguistic behaviour (e.g. if all speakers agree that a certain
individual is clearly tall in a given context, then any adequate fuzzy model will classify
that individual as being definitely tall). In our view, fuzzy plurivaluationism provides an
answer to the problem of artificial precision. For further discussion of these matters see
the references provided (and cf. also n.26 below).

The paper proceeds as follows. §2 sketches a fuzzy logic based solution to the sorites
and points to problems for attempts to solve the sorites that maintain bivalence. §3
presents the technical details behind the fuzzy solution of §2. §4 raises two challenges for
this fuzzy approach: on the one hand, that of adequately analysing the comparative form
of adjectives; on the other, that of extending the fuzzy account of vagueness to a wider
account of gradability. §5 presents the technical details of a kind of fuzzy logic that is
somewhat different from the kind presented in §3. §6 shows how the earlier fuzzy solution
to the sorites still goes through in the context of the new kind of fuzzy logic, and shows
how this new logic provides the basis for a semantics that meets the two challenges above.
§7 concludes.

A couple of comments about the structure of the paper are in order before starting. In
order to present the version of fuzzy logic that is suitable for our purposes (in §5), uninorm-
based logics, we first (in §3) present a closely related class of logics, (left-continuous) t-norm
based logics. The point of presenting not only the formalism that we endorse but also some
closely related logics is informational. Some of these logics will be much better known by
our readers than uninorm-based logics and we think that learning about our proposed for-
malism by comparing it with those better known alternatives will prove useful. Moreover,
note that in §5 we will describe in detail a specific example of a uninorm-based logic — one
that does all the jobs we need them to do. This has a twofold aim. First, pedagogical: to
illustrate with a particular example what the type of formalism that we require looks like.
But it serves another purpose as well: to prove that there is at least one formalism checking
all the boxes that we need. However, note that we are not married to this particular logic.
Any system that shared with it the same algebraic properties would do.

2 Vagueness and Fuzzy Logic

Vagueness is centrally a property of predicates—for example ‘bald’, ‘tall’ and ‘heavy’.
Predicates that are not vague are said to be precise—for example ‘under 1.4m in height’,
‘weighs at least 500 grams’ and ‘north of the equator’. Vague predicates are usually
identified as those possessing three characteristics: the boundaries of their extensions are
blurry; they exhibit borderline cases (things of which we will neither confidently assert
nor confidently deny that they fall under the predicate); and they give rise to sorites
paradoxes.3 To explain the latter point: A sorites series for a predicate F is a series of
objects with the following characteristics:

1. F definitely applies to the first object in the series

2. F definitely does not apply to the last object in the series

3. Each object in the series (except the last one, which has no object after it) is extremely
similar to the object after it in all respects relevant to the application of F .

3See e.g. Keefe and Smith [1997], Smith [2008].
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For example, a series of blocks of concrete ranging in weight from 100kg to 1kg in increments
of a gram is a sorites series for ‘heavy’ and for ‘weighs at least 50kg’; a series of pieces of
string ranging in length from 100m to 1cm in increments of a millimetre is a sorites series
for ‘long’ and for ‘at least 1m in length’; and so on. Given a sorites series, we can generate
an associated sorites argument :4

1. x1 is F

2. For every x, if x is F then x
′ is F

(Or: There is no x such that x is F and x
′ isn’t F . Or all of the following: If x1 is

F then x2 is F , . . . , If xn−1 is F then xn is F . Or all of the following: It is not the
case both that x1 is F and x2 isn’t F , . . . , It is not the case both that xn−1 is F and
xn isn’t F .)

3. Therefore xn is F .

Where F is a precise predicate (e.g. ‘weighs at least 50 kg’), the sorites argument will be
obviously mistaken: there clearly is an x such that x is F and x

′ is not F . Where F is
a vague predicate (e.g. ‘is heavy’), the sorites argument will seem genuinely paradoxical:
the premises all seem to be true, the reasoning seems to be correct, and yet the conclusion
seems to be false. Thus vague predicates, unlike precise ones, give rise to sorites paradoxes.

A requirement on any theory of vagueness is that it solves the sorites paradox. In the
current literature on vagueness it is generally agreed that there are two aspects to such a
solution. One task is to locate the error in the sorites argument. The second task is to
explain why the sorites argument constitutes a paradox as opposed to a simple fallacy.5
Thus a theory of vagueness must explain why competent speakers find the sorites argument
somewhat but not ultimately compelling: why they do not spot the error immediately (as
they do when the predicate involved in the sorites argument is precise) and yet are not
convinced by the argument to accept the conclusion.

Among existing approaches to vagueness, we believe that the kind best placed to meet
this explanatory task is that based on the fundamental guiding idea that truth comes in
degrees and formalised using a fuzzy logic.6 Technical details will be given below, but let
us begin with the basic idea, which is that statements may be entirely false—represented
by the truth value 0—or completely true—represented by the truth value 1—or have one
of infinitely many intermediate degrees of truth—represented by the real numbers greater
than 0 and less than 1.7 Consider for example a series of piles of sand 1 through 10 000,
where pile i has i grains of sand and each pile is of a very similar shape to its neighbour(s).
The idea will be that claims such as ‘Pile 1 is a heap’ concerning piles at the end of
the series are fully false, claims such as ‘Pile 10 000 is a heap’ concerning piles at the
beginning of the series are fully true, and in between, claims of the form ‘Pile n is a heap’
have intermediate degrees of truth. Connectives will be associated with functions on the
degrees of truth which allow truth values to be assigned to complex formulas in a way
analogous to classical logic. For example we might define the truth values of conditional
statements as follows (where ��↵�� represents the truth value of ↵):

��↵ → ��� = �������
1 if ��↵�� ≤ �����
1 − (��↵�� − �����) if ��↵�� > �����

4x1, . . . , xn denote the objects in the series from first (x1) through to last (xn). x ranges over all objects
in the sorites series except the last object and x′ is the object immediately after x in the series.

5See e.g. Fara [2000].
6As mentioned in §1, the argument that fuzzy theories of vagueness handle the sorites better than

other kinds of theory is presented elsewhere [Smith, forthcoming] and in this paper we do not repeat the
argument in full.

7The fundamental idea is that truth comes in degrees. The representation of these degrees of truth by
real numbers between 0 and 1 inclusive is convenient but not essential to the very idea of degrees of truth,
which could potentially be modelled using other structures. We shall discuss this issue further below.
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This is known as the Łukasiewicz conditional. The idea is that its truth value drops below
full truth to precisely the extent to which the truth value of the consequent drops below
that of the antecedent.

Now consider the following sorites argument:

Pile 10 000 is a heap.

If pile 10 000 is a heap then pile 9 999 is a heap.

If pile 9 999 is a heap then pile 9 998 is a heap.

⋮
If pile 2 is a heap then pile 1 is a heap.

∴ Pile 1 is a heap.

Let’s suppose that ‘if. . . then. . . ’ here is read as the Łukasiewicz conditional and that we
define validity as follows: on every model on which every premise is true to degree 1, the
conclusion is true to degree 1. Then we get the following solution to the sorites. The
problem with the argument is that, although it is valid, it is unsound (i.e. it is not the case
that every premise is true to degree 1). The first premise is true to degree 1. As for the
conditionals, at first both antecedent and consequent are true to degree 1, and so are the
conditionals. As we move along the series, we get to a point at which the antecedents are
ever so slightly more true than the consequents. In this region, the conditionals are true to
a degree ever so slightly less than 1. This continues for a while until both antecedent and
consequent are true to degree 0, and hence the conditionals are true to degree 1 again. So
why is the argument compelling? Because all the premises are very nearly true to degree
1. In normal contexts, we are naturally inclined simply to accept something as true when
it is very nearly true—this is a useful approximation. Of course, once we see where the
argument leads, we may well reconsider.8

Other approaches to vagueness do not offer an equally compelling explanation of why
the sorites is a paradox rather than a simple fallacy. Consider for example epistemi-
cism. On this approach, the semantics and logic of vagueness are entirely classical. Vague
predicates—like precise ones—have crisp sets as their extensions. Classical reasoning is
correct in the presence of vagueness just as it is in the precise realm of mathematics. This
is not to say that there is no distinction at all between vague predicates and precise ones:
while they are the same from the semantic and logical points of view, there is an epistemo-
logical difference between them. Although the extensions of all predicates are crisp sets,
with vague predicates we cannot know where the borders lie. Thus, according to epistemi-
cism, the blurriness of the boundaries of a vague predicate F is of an epistemic sort: in
themselves the boundaries are perfectly sharp but they are hidden behind a veil of igno-
rance. For all objects x, Fx is true or false; the borderline cases are objects x for which we
cannot know whether Fx is true or false. The first part of the epistemicist solution to the
sorites paradox—saying what is wrong with the argument—is straightforward. According
to the epistemicist, there is a sharp cut-off in the sorites series between the last object that
is P and the first object that isn’t—so the second premise is false. The second part of the
solution—saying why we find the argument compelling—is more subtle. According to the
epistemicist, we cannot know where the cut-off is—and so we mistakenly think that there
is no such cut-off. This is why we are inclined to accept the second premise even though
it is in fact false. But this solution faces a serious problem: it does not fit with the usual
methodology and rationale of formal semantics of natural language. In formal semantics,
the idea is to make explicit the semantic theory that is implicit in the ordinary usage of
competent speakers: to codify the semantic facts, implicit grasp of which leads speakers to

8Cf. Forbes [1983, pp.243–4], Forbes [1985, pp.171–2], Williamson [1994, pp.123–4], Paoli [2003, p.365]
and Paoli [forthcoming].
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use the language the way they do. The problem for the epistemicist is that a speaker who
internalised the epistemicist’s semantic theory would not react to the sorites in the way
ordinary speakers do.9 To put it another way, the epistemicist explanation of speakers’
reactions to the sorites argument turns on their being fundamentally mistaken about the
semantics of the predicates they are using. For suppose that a speaker did realise that a
predicate F had sharp but unknowable boundaries. Then she would not think that the
conditional premises of the sorites argument for F are all true—even though she would
indeed be unable to mark the cut-off point in the sorites series between the F ’s and the
non-F ’s. For example, suppose we define the predicate ‘bearfast’ to apply to all and only
objects that are moving faster than any polar bear moved on 11th January 1904. We
know that some objects are bearfast (e.g. the jet plane flying overhead) and that some
are not (e.g. the parked car across the street) but there are many things of which we will
neither confidently assert nor confidently deny that they are bearfast—and it seems that
we will never be able to gain the information required to classify these cases one way or the
other. Yet ‘bearfast’ does not generate sorites paradoxes. We can set up a sorites series
for ‘bearfast’, beginning with an object moving at great speed and progressing by tiny
increments to a stationary object—but the associated sorites argument will be obviously
mistaken: there is indeed some object x in the series such that x is bearfast and x

′ is
not. Of course we do not—cannot—know which object it is: but this will not make us
think (even for a moment) that the second premise of the sorites argument is true. So
if ordinary speakers implicitly thought that vague predicates work the way epistemicists
say such predicates work, they would not behave as they do with vague predicates. In
particular, they would regard sorites arguments for vague predicates as obvious mistakes
rather than genuine paradoxes. This sets the epistemicist approach at odds with the usual
rules of the game in formal semantics.

Note that the fuzzy approach faces no such problem. In the explanation given above
of why the sorites argument is compelling, we do not suppose that speakers mistakenly
think that the premises are fully true. Rather, we exploit the fact that someone who takes
a statement to be extremely close to fully true would naturally just go along with the
statement—at least in normal contexts and until trouble was seen to arise. In everyday
contexts we round values up or down: not just truth values, but all values. This rounding
heuristic—near enough is good enough—is, in general, useful. Sometimes of course it leads
to trouble—but in such cases we just refrain from applying it. Indeed the fuzzy theorist can
argue that the sorites is just such a case and that this is precisely why, although ordinary
speakers are initially willing to go along with the premises, they do not ultimately find the
argument fully convincing. The fuzzy theorist can, then, explain speakers’ reactions to the
sorites in a way compatible with the idea that ordinary speakers internalise the semantic
theory that the fuzzy theorist is proposing for vague language. Thus the fuzzy theory runs
the gauntlet of presenting a semantic theory according to which the sorites argument is un-
sound, and yet is such that a speaker who implicitly accepted that semantic theory would
not reject the sorites argument as clearly fallacious but would find it compelling. This ap-
parently impossible task is achieved thanks to the general purpose rounding heuristic which
initially leads speakers to go along with a premise that they do not take to be fully true.

Other rivals to the fuzzy approach based on two truth values (even views that allow
truth value gaps) face the same sort of problem as epistemicism. As mentioned, this has
been argued at length in Smith [forthcoming] and the full details will not be repeated here—
but let us briefly mention contextualist approaches, because they tend to be favoured by

9On terminology: Suppose that some speakers’ implicit grasp of certain semantic facts leads them to
use language the way they do—and suppose that a certain semantic theory T is a correct codification of
those semantic facts. In such a situation, we say that those speakers ‘internalise’ that semantic theory.
This is purely for ease of expression and should not be taken to suggest (for example) that the semantic
theory comes first and then speakers learn it. On the contrary, the speakers’ usage comes first and the
semantic theory seeks to codify those semantic facts, implicit grasp of which leads speakers to use language
as they do.
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formal semanticists who take a bivalent degree-based approach to vague adjectives. There
are many varieties of contextualism but at a certain level of abstraction the core idea is
that vague predicates have crisp classical sets as their extensions, but these extensions shift
easily and frequently. In particular, they shift in such a way that one cannot truly claim
that a is F and b is not F , where a and b are very similar in F -relevant respects (e.g.
they are adjacent members of a sorites series for F ). While, in a sense, the thought one
is trying to express in making such a claim was true before one tried to say it, the act of
saying it shifts the context in such a way that it is not true in the context in which one in
fact says it.10 Such accounts are very well placed to explain why speakers cannot identify
a boundary between the F ’s and the non-F ’s, i.e. an a and b such that a is F and b is
not F . However, they are unable to explain why speakers who internalise a contextualist
semantics go along with the second premise of the sorites. For this premise is clearly false
on every model of the kind that contextualists countenance—and speakers who internalise
the contextualist semantics would know this. Contextualists must resort to claiming that
ordinary speakers make some sort of mistake.

This flouts the rules of the game in formal semantics, where the project is to come up
with a semantic theory that codifies what competent speakers internalise, knowledge of
which explains why they speak the way they do. For example, Kennedy writes:

the reason that we are unwilling to reject the second premise is the same as
the reason that the positive form is infelicitous in examples involving crisp
judgments: doing so would invoke a context (the one that falsifies the universal
generalization) in which one of two objects that differ minimally in the property
measured by g is claimed to stand out relative to g and the other not. [Kennedy,
2007, 19]

But the semantic theorist can survey the possible interpretations and note that the second
premise is false on all of them—indeed that is what Kennedy does earlier in the same
paragraph:

we may assume that in any context, there is in fact a cutoff point between
the objects that the positive form is true of and those it is false of based on
the degree determined by s: the minimal degree needed to ‘stand out’ relative
to g in the context. That is, we maintain bivalence for vague predicates, and
assume the inductive premise of the Paradox is false.

When Kennedy says this, he does not “invoke a context (the one that falsifies the universal
generalization) in which one of two objects that differ minimally in the property measured
by g is claimed to stand out relative to g and the other not”. But then an ordinary speaker
should be able—indeed should be expected—to do the same thing: to baulk when they hear
the inductive premise, because—without invoking any particular context—they can see
that it is false in every possible interpretation that could be invoked in any ordinary context.

A formal semantic theory is supposed to make explicit that which competent speakers
implicitly grasp and which makes them speak the way they do. If knowledge of the contex-
tualist semantic theory leads Kennedy to reject the inductive premise as being false, then
their implicit knowledge of the theory should lead competent speakers to do the same thing.

Again, note that the fuzzy theory faces no problem here. Fuzzy theorists and ordinary
speakers are expected to do the same thing: to go along with the inductive premise initially
(because it is so close to being true, and we generally apply a rounding heuristic as a default,
unless or until it is seen to cause problems—that is why extreme pedants stand out as so
unusual, if not annoying, in ordinary life) but not to regard the sorites as a sound argument
that establishes its conclusion.

10On contextualist theories of vagueness see e.g. Kamp [1981], Tappenden [1993], Raffman [1994],
Raffman [1996], Soames [1999, ch.7], Fara [2000], Stanley [2003], Shapiro [2006], Kennedy [2007],
Åkerman [2009] and Åkerman [2012].
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So far so good then for the fuzzy treatment of the sorites—but what about the alter-
native formulations of the sorites argument: for example, the one that replaces the condi-
tionals ‘If pile n

′ is a heap then pile n is a heap’ with the negated conjunctions ‘It is not
the case both that pile n

′ is a heap and pile n isn’t a heap’? It was on precisely this point
that Crispin Wright objected to the fuzzy kind of approach to vagueness and the sorites:

Can a degree-theoretic account explain the plausibility of the major premises?
There is no difficulty, of course, with the usual, quantified conditional form
of premise. The explanation will claim that each instance, Fa → Fa

′, of(∀x)(Fx → Fx
′) is almost true: that its consequent enjoys a degree of truth

ever so nearly but not quite as great as that of its antecedent. And this claim
will then be followed. . . by a stipulation that the degree of truth of any univer-
sally quantified statement is the minimum of the degrees of truth enjoyed by
its instances. . . But. . . the major premise doesn’t need to be conditional at all.
In the case of the Sorites-series of indiscriminable color patches for instance,
we could just as well take it in the form

(∀x) − [red(x) & − red(x′)].
All the ways of making the conditional form of major premise seem intuitively
plausible would be applicable to this conjunctive form. . . [the degree theorist]
needs to explain. . . with what right such a conjunctive major premise may be
regarded as almost true; otherwise he cannot explain its plausibility, or duly
acknowledge the force of the arguments which seem to sustain it. [Wright,
1987, 251–2]

Wright doubts that the degree theorist can give an account on which such a conjunctive
major premise is almost true. Certainly, the conjunctions are not all almost true if one
models conjunction as follows—an approach which mirrors the treatment of intersection
in Zadeh’s [1965] fuzzy set theory and has frequently been assumed in the philosophical
literature on fuzzy logic:

��↵ ∧ ��� = min{��↵��, �����}
However there is a well-studied and well-understood fuzzy logic in which the conditional is
treated in the Łukasiewicz fashion mentioned above and ‘If ↵ then �’ is logically equivalent
to ‘It is not the case that (↵ and not �)’. Far from being an ad hoc bolt-on addition to
avoid Wright’s objection, this relationship between the conjunction and the conditional is
central to certain t-norm fuzzy logics which we shall introduce in the next section.

3 Mathematical Fuzzy Logic: t-norm-based logics

In this section, we show how the logical tools needed for the treatment of vagueness seen
above fit in the very well understood framework of mathematical fuzzy logic. We start
from Łukasiewicz predicate logic, as a central example, and then introduce the class of
all t-norm-based logics, together with a little historical background for context. Later, in
Section 5, we present a broader logical framework necessary for the purposes of the paper.
For more details, we refer the reader to the handbook series [Cintula et al., 2011 and 2015]
and references therein.

Fuzzy sets were introduced by Lotfi Zadeh [1965] as a mathematical paradigm for han-
dling imprecision and gradual change in engineering applications. They are conceptually
very simple: a fuzzy set is nothing more than a classical set X endowed with a function
µ∶X → [0,1] which represents the degree to which an element of the domain X belongs to
the fuzzy set. This proposal spawned a whole research area which included mathematical
studies, but also technological applications, in particular, to so-called fuzzy control. The
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field came to be known sometimes as fuzzy logic, although its mathematical machinery
and the concepts investigated were largely unrelated to those typically used and studied
in (mathematical) logic.

Mathematical fuzzy logic was developed by Petr Hájek and his collaborators (see Hájek
[1998], Gottwald [2001], Mundici [2011], Novák [1990]) as a discipline of mathematical logic
aiming at providing solid logical foundations for fuzzy set theory by focusing on syntactic
formalization of discourse and a notion of logical consequence and thus, among others,
creating a viable tool for a logical study of reasoning under vagueness. Over the years
the field has grown into a systematic study of fuzzy logics understood as a certain kind of
many-valued logics.

Łukasiewicz logic, mentioned in the previous section in relation to the sorites paradox, is
an early example of a genuine fuzzy logic, that had been studied already for quite some time
before the inception of fuzzy sets (see Łukasiewicz [1920], Łukasiewicz and Tarski [1930],
Rose and Rosser [1958], Hay [1963]). In the syntactic aspects, this logic is completely
classical. A predicate language P is a triple �P,C,ar�, where P is a non-empty set of
predicate symbols, C is a set of constant symbols (disjoint from P), and ar represents the
arity function, which assigns to each predicate its arity.11 P-terms are just object variables
and object constants. Atomic P-formulas are expressions of the form R(t1, . . . , tn), where
R ∈ P is a predicate of arity n and t1, . . . , tn are P-terms. P-formulas are built from the
atomic ones using the implication connective →, the truth constant for falsum f (below we
mention other definable connectives), and the quantifiers ∀ and ∃. As customary, whenP is clear from the context, we will refer to P-terms and P-formulas simply as terms and
formulas and furthermore, formulas without free variables are called sentences.

The two non-classical twists come in the semantics:

• Given a predicate language P = �P,C,ar�, we define a P-structure M as a tuple

M = �M, �RM�R∈P, �cM�c∈C�,
where M is a non-empty domain, cM is an element of M , and for each n-ary predicate
R, RM is an n-ary [0,1]-valued relation, i.e. a function from M

n to [0,1], identified
with an element of [0,1] if n = 0. Observe that the genuinely non-classical part of
this kind of structure lies in the interpretation of predicates, which generalize the
notion of fuzzy set. Indeed, if R is a unary predicate, then the interpretation is a
function RM∶M → [0,1], i.e. a fuzzy set.

• As truth values of (atomic) predicate formulas are now elements of the interval [0,1],
in order to be able to compute the value of an implication between two formulas, we
need a function that maps two elements of [0,1] to another element of the interval;
we call such function an interpretation of a connective (the implication in this case).
Łukasiewicz logic uses the following interpretation of →:

a→Ł b = �������
1 if a ≤ b,
1−a+b otherwise.

Unsurprisingly, the interpretation of the truth constant f will be 0. See below for
the interpretation of other defined connectives.

We say that a P-structure M is crisp if the codomain of each function RM is the set{0,1}. Note that crisp P-structures can be identified with the usual models of classical
first-order logic.

We are now ready to define the truth values of all P-formulas in a given P-structure
M for an M-valuation v (i.e., a mapping from object variables to the domain M); note

11It is relatively straightforward to allow also function symbols in the language and/or consider a special
symbol for equality, but we decide to omit them here for simplicity.
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that in crisp P-structures the upcoming definition fully coincides with the usual definition
of truth in classical logic. First, we extend the evaluation v from object variables to allP-terms by setting v(c) = cM for each c ∈C and, then, we proceed recursively:

��R(t1, . . . , tn)��M,v = RM(v(t1), . . . , v(tn)) for each n-ary R ∈ P��'→  ��M,v = ��'��M,v →Ł �� ��M,v��f��M,v = 0��(∀x)'��M,v = inf{��'��M,v[x�d] � d ∈M}��(∃x)'��M,v = sup{��'��M,v[x�d] � d ∈M}.12

Finally, we conclude our definition of semantics by saying that a P-formula ' is a
consequence of a set of P-formulas �, � �Ł ' in symbols, if for each P-structure M we
have:13

if �����M,v = 1 for each � ∈ � and each M-evaluation v, then ��'��M,v = 1 for each
M-evaluation v.

A formula ' is valid in Łukasiewicz predicate logic, if it is a consequence of the empty set
of premises. Note that restricting to the value 1 when defining consequence (and validity)
does not diminish the importance of other truth values. Indeed, thanks to these values one
can disprove the validity of certain classical tautologies (see below for examples).

Łukasiewicz predicate logic can be given various Hilbert-style presentations, albeit
rather complex ones, either with a non-recursively enumerable set of axioms, or by us-
ing an infinitary deduction rule (Hay [1963], Ragaz [1981]). However, there is a related
weaker finitary logic which has more complex semantics but can be recursively axioma-
tized (with modus ponens and generalization as the only deduction rules) and shares the
same propositional fragment with our Łukasiewicz predicate logic (i.e., they coincide when
restricted to the language with only nullary predicates); see Hájek [1998] and Section 5 for
more details.

Using the given interpretations of the connectives → and f, we can easily compute the
semantics of other connectives definable from → and f in the usual (classical) way. Note
however that, due to the presence of additional truth values, two classically equivalent
definitions of conjunction lead to different functions in this context:14

connective definition interpretation¬' '→ f 1 − ��'��
t ¬f 1

'&  ¬('→ ¬ ) max{0, ��'�� + �� �� − 1}
' ∧  ¬( → ¬( → ')) min{��'��, �� ��}
' ∨  ('→  )→  max{��'��, �� ��}

Simple arithmetical manipulations allow one to check the following properties, for each
a, b, c ∈ [0,1],

1. a&Ł b ≤ a ∧Ł b 5. ¬Ł¬Ła = a
2. a→Ł b = ¬Ł(a&Ł ¬Łb) 6. a→Ł b = 1 iff a ≤ b
3. a ∧Ł b = ¬Ł(¬Ła ∨Ł ¬Łb) 7. 1→Ł a = a
4. a ∨Ł b = ¬Ł(¬Ła ∧Ł ¬Łb) 8. a&Ł b ≤ c iff a ≤ b→Ł c.

12By v[x�d] we denote the M-valuation, resulting from v by setting v[x�d](x) = d and keeping the
values of the remaining variables unchanged.

13Observe that the notion of consequence we define can be characterized as a sentential truth-preserving
notion of consequence, i.e., one which is concerned with whether the property of “having value 1 for all
valuations” is preserved. Other alternatives, not considered in the paper, include the non-sentential truth-
preserving consequence, which is concerned with whether the property of “having value 1” is preserved for
each valuation, or the degree-preserving consequence, which is concerned with whether for all valuations
the value of conclusion is not less than the value of each of the premises; see Bou et al. [2009].

14It is also possible to define a second disjunction, by means of the formula ¬' →  , linked with the
conjunction & by De Morgan laws. However, since this disjunction connective will not have a general
counterpart in the framework introduced later, we will skip it here.
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The last property is called the residuation law and plays a crucial role in the broader
framework of mathematical fuzzy logic we introduce below. The seventh property (together
with the sixth one) ensures the validity of the formulas ' → (t → ') and (t → ') → ',
which will be relevant later. But most importantly, let us note that the definitions of both
& and ∧ would give conjunction in classical logic. The former is called strong conjunction
because, by the first and the sixth property, we have �Ł ' &  → ' ∧  . The latter is
called lattice conjunction because of its semantic interpretation (and, for the same reasons,∨ is called lattice disjunction). The, perhaps more straightforward syntactic definition of
& gives us the validity of the classical laws of non-contradiction and modus ponens, which
however fail for the lattice conjunction ∧:

�Ł ¬('& ¬') while for ��'�� = 1
2 we have ��¬(' ∧ ¬')�� = 1

2�Ł '& ('→  )→  while for ��'�� = 1
2 and �� �� = 0 we have ��' ∧ ('→  )→  �� = 1

2

As regards modus ponens, note that as a deduction rule it is valid even when using ∧, i.e.,
we have:

' ∧ ('→  ) �Ł  .

Therefore, in particular, the classical deduction theorem fails in Łukasiewicz logic. How-
ever, thanks to the strong conjunction, the logic still retains the following form of deduction
theorem: for each set of formulas � ∪ {', },

�,' �Ł  if and only if there is an n ≥ 0 such that � �Ł '
n →  

where 'n is inductively defined as: '0 = t, '1 = ', and '
i+1 = 'i & ' for i > 0. This is a

local version of deduction theorem, because it does not have the same formulation for all
formulas; indeed the number n varies for different choices of the formulas � ∪ {', }.15

The presence of two (definable) conjunctions is not a particularity of Łukasiewicz logic.
Actually, it is rather frequent in non-classical logics to obtain a split of some classical
connectives. The high inferential strength of classical logic (indeed, it is well known that
as a propositional system it is a maximal consistent logic) conflates on a single connective
many properties that in weaker logics are distributed between different connectives. In the
case of Łukasiewicz logic (and in the weaker logics we introduce later) we have that

1. the strong conjunction & retains the good relationship between conjunction and
implication captured by the residuation law, the law of non-contradiction, and modus
ponens,

2. the lattice conjunction ∧ keeps the order-related properties arising from its semantic
interpretation as the function minimum.

Interestingly enough, classical logic can be obtained as the axiomatic extension of
Łukasiewicz logic by adding ' ∧  → '&  , i.e. the other half of the equivalence between
both conjunctions.16

The presentation of Łukasiewicz predicate logic that we have seen can be easily general-
ized to accommodate other well-known fuzzy logics. Let us keep most of the syntactic and
semantic notions untouched (predicate language, atomic formulas, quantifiers, connectives,
structures, valuations etc.). We only (partly) change the definition of truth values of for-
mulas by considering a more general treatment of connectives. First of all, we consider the
connectives →, &, ∧, and ∨, and the truth constants f and t as primitive (despite the fact,
irrelevant here, that in the present semantic setting some of them are still interdefinable)
and use the additional defined connective ¬' = ' → f. While we continue interpreting∧, ∨, f, and t as before (i.e., min, max, 0 and 1), now we consider a much wider set of
possible interpretations of & and →.

15Actually, it can be shown that n can be taken as the minimum number of times one needs to use the
premise ' in a formal proof of  from � ∪ {'} (see Chvalovský and Cintula [2012]).

16Alternatively, it can also be obtained by adding the axiom of excluded middle, ' ∨ ¬', or the axiom
of contraction: ('→ ('→  ))→ ('→  ); see Hájek [1998].
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To this end, we define a t-norm Klement et al. [2000] as a binary operation on [0,1]
which has 1 as the neutral element and is commutative, associative, and monotone. More
formally, a t-norm is a function ∗∶ [0,1]2 → [0,1] such that, for each a, b, c ∈ [0,1], we have:

a ∗ 1 = a
a ∗ b = b ∗ a

a ∗ (b ∗ c) = (a ∗ b) ∗ c
if a ≤ b, then a ∗ c ≤ b ∗ c

A t-norm is left-continuous if for each B ∪ {a} ⊆ [0,1] we have:

sup{a ∗ b � b ∈ B} = a ∗ supB.

A crucial fact is that, for each left-continuous t-norm ∗, there is a unique operation ⇒∗
(called the residuum of ∗) satisfying the residuation law w.r.t. ∗, that is, for each a, b, c ∈[0,1], we have:

a ∗ b ≤ c if, and only if, a ≤ b⇒∗ c
and it can be easily computed that, for each a, b ∈ [0,1], we have:

a⇒∗ b = sup{c ∈ [0,1] � c ∗ a ≤ b}.
One may easily check that the functions a∗Łb =max{0, a+b−1} and a⇒Ł b =min{1,1−a+b}
used above for the interpretation of & and → in Łukasiewicz logic give an example of a
left-continuous (actually, continuous) t-norm and its residuum (we will see other examples
soon).

As in the case of the Łukasiewicz t-norm, any left-continuous t-norm ∗ used as inter-
pretation of & will ensure the validity of the law of non-contradiction and modus ponens,
and moreover, we also have the following for each a, b ∈ [0,1]:

1. a ∗ b ≤min{a, b}
2. a⇒∗ b = 1 iff a ≤ b
3. 1⇒∗ a = a
Fixing a left-continuous t-norm ∗ and using it and its residuum as interpretations of the

strong conjunction & and the implication →, the truth values of formulas in a P-structure
M are recursively defined, for a given M-valuation v, as:

��R(t1, . . . , tn)��∗M,v = RM(v(t1), . . . , v(tn)) for each n-ary R ∈ P��' ∧  ��∗M,v = min{��'��∗M,v, �� ��∗M,v}��' ∨  ��∗M,v = max{��'��∗M,v, �� ��∗M,v}��'&  ��∗M,v = ��'��∗M,v ∗ �� ��∗M,v��'→  ��∗M,v = ��'��∗M,v ⇒∗ �� ��∗M,v��f��∗M,v = 0��t��∗M,v = 1��(∀x)'��∗M,v = inf{��'��∗M,v[x�d] � d ∈M}��(∃x)'��∗M,v = sup{��'��∗M,v[x�d] � d ∈M}.
Therefore, for each left-continuous t-norm ∗, we can define its corresponding predicate

logic by saying that a P-formula ' is a semantic consequence w.r.t. ∗ of a set of P-formulas
�, � �∗ ' in symbols, if for each P-structure M we have:

if �����∗M,v = 1 for each � ∈ � and each M-valuation v, then ��'��∗M,v = 1 for each
M-valuation v.

Observe that, even in this general setting, when restricted to the values {0,1}, the interpre-
tations of the connectives coincide with the classical connectives (in particular, collapsing &
and ∧ into classical conjunction). Therefore, if we use only crisp P-structures, �∗ becomes
classical predicate logic.
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When ∗ is the Łukasiewicz t-norm ∗Ł, a ∗Ł b = max{0, a + b − 1}, we retrieve the
Łukasiewicz logic defined before: �∗Ł = �Ł. Other choices for ∗ give other well-known fuzzy
logics (cf. Hájek [1998], Esteva and Godo [2001]). It is worth mentioning the following:17

Logic T-norm

Gödel–Dummett logic G a ∗G b =min{a, b}
Product logic ⇧ a ∗⇧ b = ab (product of real numbers)

Nilpotent Minimum logic NM a ∗NM b =
�����������
min{a, b} if a > 1 − b,
0 otherwise.

In the context we have presented here, the weakest logic (called MTL by Esteva and
Godo [2001]) is obtained by allowing ∗ to range over all left-continuous t-norms, that is,

� �MTL ' iff � �∗ ' for each left-continuous t-norm ∗ .
The logics MTL, G, and NM, are finitary and recursively axiomatizable (however, ⇧ is
neither); see Montagna and Ono [2002], Hájek et al. [2011]. The axiomatic extensions of
MTL form a core family of fuzzy logics that has been studied in depth, including all the
logics we have mentioned so far. Of course, not all axiomatic extensions of MTL are given
by a collection of left-continuous t-norms, e.g., classical logic (extension of MTL by the
law of excluded middle) being the principal example.

A particularly important axiomatic extension of MTL is the logic IMTL obtained either
by restricting the definition of MTL to t-norms satisfying the equation (a⇒∗ 0)⇒∗ 0 = a
or equivalently as the extension of its Hilbert systems by the law of double negation:¬¬' → '. It is easy to see that Ł and NM are extensions of IMTL, whereas G and ⇧
are not. In IMTL (and in any of its extensions) we have the definability of implication in
terms of negation and conjunction, i.e. '→  is equivalent to ¬('&¬ ), which allows the
conjunctive formulation of sorites mentioned in the previous section.

4 Two challenges for the fuzzy approach

We have presented a semantics for vague predicates—and more specifically a solution to
the sorites paradox, in its many guises (not just the one involving conditionals)—that
makes use of a particular fuzzy logic, and we have explained how, far from being an ad
hoc assemblage of parts cobbled together to handle vagueness, this logic occupies a central
place in the well-studied field of t-norm fuzzy logics. Thus, adopting this logic is not
like buying some untested newfangled gadget at a fair from a stall-holder one will likely
never see again: it is like buying a mature artefact, the result of a long process of product
development, with a rich set of links to related products and services (i.e. a rich set of
results about axiomatisability, decidability and all the other things one cares about when
choosing a logic).

But suppose we turn from the positive form of vague adjectives such as ‘tall’ and ‘heavy’
to their associated comparative forms: ‘taller’ and ‘heavier’. Once one has degrees of
application of the predicate F in the picture it is natural to want to analyse the comparative
F er along the following lines:

(C) a is F er than b iff a’s degree of Fness is greater than b’s degree of Fness

where ‘greater than’ refers to an ordering of the degrees. Indeed, degree-based accounts
are now the dominant approach to gradable adjectives in linguistics, and they generally
adopt this sort of analysis of comparatives. Our question now is, could the fuzzy logical

17Observe that while ∗G and ∗⇧ are actually continuous (like ∗Ł), ∗NM is only left-continuous.
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approach presented above form the basis of a semantic analysis of gradable adjectives along
these lines? And the answer seems to be No, for the following reason. Consider the first
object in a sorites series for F—an object that is definitely F . For the sake of example, let
F be ‘tall’. Now instead of going down the series, let’s go in the other direction: consider
someone b who is even taller than the first person a in the sorites series. So b is taller than
a. But a’s degree of tallness is already 1 on the approach under consideration, and so there
is nowhere to go to make b’s degree of tallness greater than a’s: there are no degrees above
1; 1 is the top of the ordering of the degrees.18

This is not a knockdown objection to the fuzzy approach outlined above—but it is
sufficient to motivate the search for a variant fuzzy theory that retains the advantages of
the one presented above while also allowing for an analysis of comparatives along the lines
just indicated.

The fuzzy approach to vagueness faces a second important challenge: to provide ade-
quate analyses of precise gradable predicates.19 These are predicates which are gradable,
that is, they can be accompanied by degree morphology (e.g. they can appear in com-
parative form) and which are nonetheless precise, that is, they fail to display some of the
surface features of vague predicates (typically, they draw sharp divides between their ex-
tensions and their complements, they do not have borderline cases and do not give rise
to sorites-style paradoxes). For instance, ‘dirty’ (at least in some contexts) is precise—it
either obtains of an object or it does not—and yet one can certainly say that something is
dirtier than something else. (Imagine a head waiter berating a kitchen hand: “This plate
is dirty—wash it again!” and then a bit later “Aarrgh, this one is even dirtier!”)

One way to check whether a predicate is vague or precise is to observe some of the
inferential patterns it validates. For example, the inferences involving antonyms of the
following form typically indicate whether a predicate has borderline cases (is vague) or not
(is precise):

‘This plate is not dirty.’ � ‘This plate is clean.’

Precise predicates like ‘dirty’ and ‘clean’ validate them, while this is not the case for
vague predicates:20

‘Alex is not tall.’ � ‘She is short.’

With a fuzzy logic like Łukasiewicz’s, we only have the means to account for the meaning
of two types of predicates: vague and crisp. The way in which one can distinguish between
the two classes in such a setting is by establishing that while vague predicates can map
objects to the whole of [0,1], crisp predicates can only map them to a subset thereof,
namely {0,1}. In other words, one takes crisp predicates as a limiting case of vague
predicates: those which do not make use of the whole algebra of truth values, but only of
a very small subset thereof. Because of the simple structure of the fuzzy scales of truth,
the fuzzy theory of vagueness is limited in the types of predicates it can analyse. For
example, the predicate ‘dirty’, when used in a precise way, would demand a structure
which excludes degrees representing borderline cases, but which nevertheless leaves room
for various degrees representing ways of being definitely dirty (not just 1).

As we will see, these two challenges to the fuzzy view can be addressed in one fell swoop.
There would seem to be two ways forward: what we might call the Nigel Tufnel approach—
extend the scale of degrees above 1—and the Marty DiBergi approach—leave the top of

18Paoli [1999, 78], citing Klein [1980] and Williamson [1994], notes an objection along these lines to
many-valued and fuzzy approaches to comparatives.

19Gradable predicates have received a lot of attention within formal semantics during the last few decades.
See, for instance, Kamp [1975], Cresswell [1976], Klein [1980], Stechow [1984], Kennedy [2007], Kennedy
and McNally [2005], Burnett [2016].

20Note that this pattern also fails for some precise gradable predicates, namely, those whose antonym
pairs are contraries (rather than contradictories)—i.e. antonyms A and B such that A is not equivalent to
not-B. For instance, it fails for ‘empty’/‘full’, despite these being precise (in some contexts).
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the scale at 1 but map a to a lower degree.21 Of course—and this is part of the point of the
joke in the movie (see n.21)—both approaches can be made to lead to what is in effect the
same result, just described in two different ways. Nevertheless, there is a real and crucially
important distinction in the offing, which turns on the notion of ‘definitely applies’: the
notion that we appealed to in the initial characterisation of a sorites series when we said
that F definitely applies to the first object in the series. Let’s suppose (temporarily) that
we retain the idea that degree 1 corresponds to the notion of definite application: that is, for
any object a to which F definitely applies, F ’s degree of application to a will be 1 (or at least
1, should we go the Nigel Tufnel way of adding degrees above 1). Given this stipulation on
the meaning or role of the degree 1, the Marty DiBergi approach—leave the top of the scale
at 1 but map a to a lower degree—must be rejected. For that approach cannot then capture
the initial datum that F definitely applies to the first object in the sorites series for F . So—
given the assumption that degree 1 corresponds to the notion of definite application—we
need to take the Nigel Tufnel approach, in which the scale of degrees extends above 1, and
the first object in the sorites series for F is mapped to 1 or to some degree greater than 1.

Now of course, we could just as well proceed by transferring the role of capturing the
idea of definite application from 1 to a lesser degree—say (for the sake of illustration)
0.9—and then we would not need to add degrees above 1. But the point would remain
that we would still be countenancing degrees above the degree to which the first object
in the sorites series for F is mapped—and this is not something that we countenanced
on the original approach to the sorites outlined earlier. This is the real essence of the
approach that we wish to explore now. The idea is to have an ordered structure of degrees
that includes a particular degree X which captures the idea of definite application—and,
unlike the earlier proposal, includes further degrees greater than X. That is, unlike in the
earlier proposal, instead of having a single degree (in the earlier presentation, the degree
1) that captures the idea of definite application, we now have a set of them, of which X
is the least. For the sake of simplicity and familiarity we shall generally assume that X
is 1—which means that we’ll be taking the Nigel Tufnel approach of having more degrees
above 1. But of course this makes no essential difference: it was always merely convenient,
but not essential, to model the degrees of truth as an interval of reals with greatest element
1, and similarly below, it will be convenient but not essential to model them as an interval
of reals with greatest element strictly greater than 1.

The idea will be that a statement that is mapped to a degree greater than or equal to 1
(or more generally, X) will be definitely true—just as the idea of F definitely applying to an
object a is represented by F ’s degree of application to a being greater than or equal to 1 (or
more generally, X). Accordingly, logical consequence will be modelled in terms of preserva-
tion of definite truth: a valid argument will be one such that there is no model in which the
premises are all definitely true (have a truth degree greater than or equal to 1, or more gen-
erally X) and the conclusion is not (it has a truth degree less than 1, or more generally X).

Note that given the addition of further degrees above 1 (or more generally, X), it will
also be natural to say a dual thing about degrees less than 0. In our initial characterisation
of a sorites series we said that F definitely does not apply to the last object c in the series.
In our earlier approach, degree 0 captured this notion of ‘definitely not applying’—but
of course there is nothing mandatory about using 0 for this purpose and in general we
could have some other set of degrees, as long as some degree Y among them plays the role

21These approaches are named after the characters in the following dialogue from the 1984 motion picture
This Is Spın̈al Tap: Nigel Tufnel: This is a top to a, you know, what we use on stage, but it’s very, very
special because, if you can see Marty DiBergi: Yeah NT: the numbers all go to eleven. Look, right across
the board, eleven, eleven, eleven and MD: Oh, I see. And most amps go up to ten? NT: Exactly. MD: Does
that mean it’s louder? Is it any louder? NT: Well, it’s one louder, isn’t it? It’s not ten. You see, most,
most blokes, you know, be playing at ten, you’re on ten here, all the way up, all the way up, all the way
up, you’re on ten on your guitar, where can you go from there? Where? MD: I don’t know. NT: Nowhere.
Exactly. What we do is, if we need that extra push over the cliff, you know what we do? MD: Put it up
to eleven. NT: Eleven. Exactly. One louder. MD: Why don’t you just make ten louder and make ten be
the top number and make that a little louder? NT: [long pause] These go to eleven.
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of capturing the notion of definite non-application. Now in many sorites series, it will be
possible to add a further object d after the last one such that c is F er than d—for example,
an extra person such that the last person in the original sorites series for ‘tall’ is taller than
this extra person. So it will be natural to have the structure of degrees extend below 0 (or
more generally, Y) and to model the idea of F definitely not applying to an object a by
F ’s degree of application to a being less than or equal to 0 (or more generally, Y). Again,
for simplicity and familiarity we shall generally assume that Y is 0—but of course this is
not essential.

This kind of approach opens the way to an adequate analysis of comparatives, thus
meeting the challenge presented above. Recall the person b who is even taller than the
first person a in the sorites series for ‘tall’. We can now have it that the degree of application
of ‘tall’ to b is greater than its degree of application to a and that the predicate definitely
applies to both objects: this will be so if the degree of application to a is at least 1 (or more
generally, X) and if the degree of application to b is even higher up the ordering of degrees.
Moreover, this is exactly what we need in order to meet the other challenge to the fuzzy
account of vagueness: that of analysing precise gradable predicates. Since these predicates
are gradable, we need to be able to map objects to more than two degrees (i.e. not just to
0 or 1), but since they are precise, we need to avoid mapping them to the borderline area
of the scale. In other words, we need multiple degrees of definite truth (and/or of definite
falsity), which is precisely what this approach amounts to.

At this point someone may feel some confusion about how it can be that a predicate F

definitely or fully applies to a, and yet applies even more to b. But to make sense of the
situation we need only think of a sorites series with further objects added before the first
one: the first object is definitely F ; and the ones added before it are F er than the first. If
it still seems odd to you to say that a is definitely or fully F and yet b has a higher degree
of Fness than a, then you are simply objecting to the idea (which, as we mentioned, is
dominant in the literature) of analysing the comparative F er along the lines of (C) above.
That may not be an untenable position, but it is beside the point here: for our aim now is
to see whether we can come up with a variant of the fuzzy approach to the sorites presented
earlier in this paper that retains its advantages while also allowing for an analysis of the
comparative along these lines. In the next section we present the formal details of such
an approach. As we shall see, just as the earlier approach found its formal home within
the well-understood family of t-norm-based fuzzy logics, the new approach also finds its
formal home within a well-understood family of logics: uninorm-based fuzzy logics.

5 Mathematical Fuzzy Logic: uninorm-based logics

In this section, we generalize the logical framework presented in section 3 to a broader fam-
ily of fuzzy logics amenable to deal with comparatives in the way outlined in the previous
section and to provide an account of gradability in general, not just of vagueness. That is,
we want logics with a semantics that, not only has many intermediate degrees of truth for
statements about borderline cases, but also a multiplicity of degrees for definitely true and
for definitely false statements. In particular, we want to present a natural generalization of
the semantics of Łukasiewicz logic, which will be very convenient for the analysis proposed
in the next section. Indeed, we construct a chain defined over the set of all real numbers
extended with two limit points (+∞ and −∞),22 in which

• the values in the open interval (0,1) are still intended as intermediate degrees of
truth,

• 1 is intended as the least degree for definitively true statements and will interpret
the truth constant t,

22The two limit points give a largest and a least truth-value whose presence is necessary for our purposes
of covering a wide class of graded predicates. Of course, these extremal truth values are not actually used
in the modelization of all kinds of graded predicates (see Section 6).
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• values above 1 are also intended for definitively true statements and +∞, the largest
of these values, will interpret the truth constant �

• 0 is intended as the largest degree for definitively false statements and will interpret
the truth constant f (and thus be used to define the negation connective)

• values below 0 are also intended for definitively false statements and −∞, the least
of these values, will interpret the truth constant �

• the connectives → and & are defined as in Łukasiewicz logic (but in an untruncated
form) as 1−x+y and x+y−1 (for the bounds we use suitable conventions; see details
below).23

In order to justify that such a chain (and similar semantical models) is indeed viable and it
fits in a reasonable logical framework, we will show the rather simple steps of generalization
that we need to take starting from the setting of t-norm-based logics seen above.

We have advocated for models with additional degrees of truth bigger than 1 for defini-
tively true statements (and degrees smaller than 0 for definitely false statements). However,
in order to be able to start our technical exposition from t-norms, it is convenient to begin
by keeping the real unit interval [0,1] as the set of truth values and interpreting the truth
constant t and f inside this interval (rather than on 1 and 0). As a first and crucial step,
we remove one requirement from the semantics of t-norms: we will not require anymore the
top of the interval to be the neutral element of ∗. This can be achieved by considering the
notion of conjunctive uninorm:24 a binary operation ∗ on [0,1] which is associative, com-
mutative, monotone, 0 is its annihilator (0∗a = 0), and it has a neutral element t (t∗a = a),
which, as we will see, will be the interpretation of t. This allows us to distinguish clearly
between t-norms and uninorms: T-norms are, naturally, conjunctive uninorms in which
the neutral element is t = 1 (the fact that 0 is an annihilator follows from the monotony
and the fact that 1 is the neutral). Let us give two examples of conjunctive uninorms with
neutral element 1

2 (which therefore are not t-norms since there can be only one neutral
element):

a ○ b =
���������
min{a, b}, if b ≤ 1 − a,
max{a, b}, if b > 1 − a. a ○CR b =

�����������
ab

ab + (1 − a)(1 − b) , if {a, b} ≠ {0,1},
0, otherwise.

The second example, called cross ratio uninorm, will allow us to obtain the desired
extension of the Łukasiewicz t-norm via a suitable transformation.

As in the case of t-norms, the left-continuity of a conjunctive uninorm ensures the
existence of a unique function satisfying the residuation law; e.g. for the previous examples
we obtain:

a⇒○ b =
���������
max{1 − a, b}, if a ≤ b,
min{1 − a, b}, if a > b.

a⇒CR b =
�����������

b(1 − a)
b(1 − a) + a(1 − b) , if a ≠ 0 and b ≠ 1,
1, otherwise.

23Let us note that we could work instead with the optically more manageable interval [−0.1,1.1] (yet
with the same cardinality), which is perhaps more consonant with our up-to-eleven spirit. Or we could,
as well, use the unit internal [0,1] to stress the similarity with t-norms. Any suitable monotone bijection
of the extended reals with any chosen closed interval of reals would yield an isomorphic semantics (more
details later); however, we would pay the price of losing the natural and simple arithmetic interpretations
of conjunction and implication that we have on the extended reals. The choice of a particular closed
interval of real numbers as the set of truth values for our algebra is inessential from the point of view of
the proposed modeling of the sorites paradox in the next section, so we can pick one just out of aesthetic
considerations like those just mentioned.

24For details on the theory of uninorms and on the particular examples that we will mention see Cintula
et al. [2011 and 2015], Gabbay and Metcalfe [2007] and references thereof.
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We can use a left-continuous conjunctive uninorm and its residuum to interpret, respec-
tively, the strong conjunction & and the implication →, while we keep the interpretation
of ∧ and ∨ respectively as minimum and maximum. To obtain a system with minimal
differences with that based on t-norms, the truth constant t should not be interpreted as
1 but rather as the neutral element t of ∗ (so we preserve the validity of the simple logical
law t & ' → ' or equivalently ' → (t → ')). The interpretation of the truth constant
f is given by an element f ∈ [0,1], sometimes determined by the expected properties of
negation (defined, as usual, as ' → f). Finally, we introduce two new truth constants �
and � to be interpreted respectively as the top and the bottom elements of the interval,
i.e. 1 and 0.

Given a left-continuous conjunctive uninorm ∗ and an element f ∈ [0,1], we can com-
pute the truth values of all formulas. However, before we give the corresponding definition
of semantical consequence, it is important to discuss the role of t and observe that it
conforms with the intuitions given in the previous section. Note e.g. that in the previous
example ○, we have t⇒○ t = 1

2 ⇒○ 1
2 = 1

2 but 1
4 ⇒○ 1

4 = 3
4 (not 1!). This is just a symptom

of a more general behavior; indeed, recall that, for any t-norm, we have:

a⇒∗ b = 1 iff a ≤ b,
but, for a uninorm with neutral element t, we only have

a⇒∗ b ≥ t iff a ≤ b.
Therefore, not only t but also some bigger degrees turn out to be values of the law

of identity ' → '. Taking this into account and, most importantly for our purposes, the
desideratum of allowing many values for definitely true statements, we define the set of
designated truth values D = {a ∈ [0,1] � a ≥ t}. This choice makes t the least designated
value, which allows to preserve as well the validity of the logical laws ' → (t → ') and(t→ ')→ '.

According to this choice, semantical consequence is defined as: � �∗,f ' if, for eachP-structure M we have:

if �����∗M,v ≥ t for each � ∈ � and each M-valuation v, then ��'��∗M,v ≥ t for each
M-valuation v.

As in the case of MTL, the intersection of all such logics, called UL, is finitary and
has been given a natural Hilbert-style axiomatization (see Gabbay and Metcalfe [2007],
Metcalfe and Montagna [2007]). Also, analogously to IMTL, we define IUL as the extension
of UL obtained by adding the law of double negation: ¬¬'→ ', which keeps the definability
of implication in terms of negation and conjunction.

There is nothing mandatory about using the interval [0,1] for the set of truth values.
As said before, we may want to have values bigger than 1 for definitely true statements, or
smaller than 0 for definitely false, or we may want to use a different set altogether, maybe
not even linearly ordered. In general, we can take an arbitrary set A equipped with the
necessary operations to interpret the connectives &, →, ∧, ∨, f, t, �, and �. We say that a
tuple A = �A,∧A,∨A,&A

,→A
,fA,tA,�A,�A� is a UL-algebra if A is a non-empty domain,∧A,∨A,&A

,→A are binary operations on A, and fA, tA, �A, �A are elements of A, and

(1) �A,∧A,∨A,�A,�A� is a bounded lattice, i.e., the relation ≤ defined as: a ≤ b iff
a∧A b = a is a partial order with least element �A, largest element �A, and ∧A (resp.∨A) is the infimum (resp. supremum) operation with respect to ≤.

(2) �A,&A
,tA� is a commutative monoid, i.e. &A is associative, commutative, and has

tA as neutral element

(3) For each x, y, z ∈ A, we have: z ≤ x→A
y iff x&A

z ≤ y
(4) For each x, y ∈ A, we have: ((x→A

y) ∧A tA) ∨A ((y →A
x) ∧A tA) ≥ tA.
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Note that the third condition is a generalization of the residuation property we have
seen in Section 3; the last condition is known as prelinearity.

Let us now introduce three particular classes of UL-algebras: those with involutive
negation and those corresponding to MTL and Łukasiewicz logic.25 We say that a UL-
algebra A is

• an IUL-algebra if for each x ∈ A, we have: (x→A fA)→A fA = x
• an MTL-algebra if tA = �A and fA = �A
• an MV-algebra if it is an MTL-algebra and, moreover, for each x, y ∈ A, we have:(x→A

y)→A
y = (y →A

x)→A
x.

Whenever the order ≤ is linear we speak about -chains instead of -algebras (e.g., IUL-
chains) and we use prefix standard if, moreover, A is the real unit interval [0,1] and ≤ is
the usual order on reals.

For example, the operations ○ and ⇒○ (or ○CR and ⇒CR respectively) defined above
and any element f ∈ [0,1] give rise to a standard UL-chain. Moreover, if f is taken as
1
2 in the first case, or for any f ∈ (0,1) in the second case, the resulting algebras are
actually standard IUL-chains. Let us note that the operations ∗Ł and ⇒Ł give rise to a
standard MV-chain (the unique standard MV-chain, modulo isomorphism). Finally, let
us note that it can be shown that A is a standard UL-chain iff &A is a left-continuous
conjunctive uninorm with neutral element tA and that A is a standard MTL-chain iff &A

is a left-continuous t-norm; see Metcalfe and Montagna [2007], Klement et al. [2000].
Now we are ready to formally introduce the semantics we have sketched at the beginning

of the section and note that it is indeed based on an IUL-chain isomorphic to the standard
IUL-chain defined by ○CR and an arbitrary f ∈ (0, 12). We call this chain C and define it
in the following way:

• the domain C of C consists of all real numbers (denoted as R) extended by the
elements −∞ and +∞

• the lattice operations ∧C and ∨C are defined as minimum and maximum with respect
to the natural order of C

• constants �C , fC , tC , and �C are defined as −∞, 0, 1, and +∞
• the connectives &C and →C are defined schematically as:

x&C
y y = −∞ y ∈ R y = +∞

x = −∞ −∞ −∞ −∞
x ∈ R −∞ x + y − 1 +∞
x = +∞ −∞ +∞ +∞

x→C
y y = −∞ y ∈ R y = +∞

x = −∞ +∞ +∞ +∞
x ∈ R −∞ 1 − x + y +∞
x = +∞ −∞ −∞ +∞

It is easy to see that all the conditions in the definition of IUL-algebra are satisfied and
the negation ¬Cx = x→C fC is the involutive function

¬Cx =
�����������
1 − x for x ∈ R
−∞ for x = +∞
+∞ for x = −∞

Observe that the simple arithmetical expressions used to define &C and →C when both
arguments are real numbers coincide with those of Łukasiewicz’s operations for the strong
conjunction and the implication, respectively, with the only difference that here they are
not truncated to fit in the interval [0,1].

25This correspondence obeys a precise technical sense, which we will not explain here; see right after the
definition and the end of the section for some hints.
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As mentioned above, it can be shown that C is isomorphic to any standard IUL-chain
defined by ○CR and f ∈ (0, 12); e.g. for f = 1

3 we use the following mapping (for other fs
just use a different suitable basis of the logarithm):

h∶ [0,1]→ R ∪ {−∞,+∞} defined as h(x) =
�����������
1 + log2( x

1−x) if x ∈ (0,1)
−∞ if x = 0
+∞ if x = 1

Therefore using any suitable strictly increasing bijection h2∶ [0,1]→ [−0.1,1.1] sending 1
3 to

0 and 1
2 to 1 we obtain the isomorphic copy of C mentioned in footnote 23, i.e., the copy

defined on the interval [−0.1,1.1] which, while having the same cardinality, is optically
more manageable interval and perhaps more consonant with our up-to-eleven spirit.

The notions of P-structure, truth value of a formula and semantical consequence have
to be naturally changed to accommodate a wider range of possible sets of truth values.
Let us fix an arbitrary UL-algebra A and define the following notions:

• An A-based P-structure M is a tuple

M = �M, �RM�R∈P, �cM�c∈C�,
where M is a non-empty domain, each cM is an element of M , and for each n-
ary predicate R, RM is an n-ary A-valued relation, i.e. a function from M

n to A,
identified with an element of A if n = 0.

• The truth values of formulas in an A-based P-structure M are recursively defined,
for a given M-valuation v, as:

��R(t1, . . . , tn)��AM,v = RM(v(t1), . . . , v(tn)) for each n-ary R ∈ P
��' ○  ��AM,v = ��'��AM,v ○A �� ��AM,v for each ○ ∈ {&,→,∧,∨}
�� ○ ��AM,v = ○A for each ○ ∈ {f,t,�,�}

��(∀x)'��AM,v = inf{��'��AM,v[x�d] � d ∈M}��(∃x)'��AM,v = sup{��'��AM,v[x�d] � d ∈M}.
Note that, since we do not assume �A,∧A,∨A,�A,�A� to be a complete lattice, some
of the suprema and infima need not exist. In that case, we take the value of the
corresponding formula as undefined. If values of all formulas are defined (for all
evaluations) we say that M is a safe P-structure.

• The designated truth values in the algebra A are defined as D = {a ∈ A � a ≥ tA} and,
therefore, the semantical consequence w.r.t. A is given in the following way: � �A '

if, for each safe A-based P-structure M, we have:

if �����AM,v ≥ tA for each � ∈ � and each M-evaluation v, then ��'��AM,v ≥ tA for each
M-evaluation v.

For any given class K of UL-algebras, we define the following consequence relation:

� �K ' iff � �A ' for each A ∈ K.

Particular choices of K give interesting logics:

• the classes UL and UL` of all UL-algebras/UL-chains yield two different recursively
axiomatizable logics. It can be shown that �UL` coincides with the logic �UL of
left-continuous conjunctive uninorms (i.e., the standard UL-chains) and it can be
axiomatized as the extension of �UL by the following form of the so-called law of
constant domains: ∀x(' ∨  ) → ∀x' ∨  (where x is not free in  ). Interestingly
enough, when restricted to propositional languages both logics coincide (see Metcalfe
and Montagna [2007]).
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• the analogous claim holds for the classes MTL and MTL` of all MTL-algebras/MTL-
chains; the only difference is that the logic �MTL` now coincides with the logic �MTL

of left-continuous t-norms (see Esteva and Godo [2001]).

• interestingly the classes of all MV-algebras/MV-chains yield the same recursively
axiomatizable logic (i.e., not two different logics as before), which is in general weaker
than the Łukasiewicz logic (which can be obtained as its extension by a simple but
infinitary deduction rule) but both logics coincide when restricted to propositional
languages (see Hájek [1998], Hay [1963]).

Finally, we introduce a notion dual to that of designated truth values which, although
not used for the definition of consequence, plays an important role in the next section.
Given a UL-algebra A, the set of its anti-designated truth values is D

′ = {x ∈ A � x ≤ fA}.
It can be shown, by easy algebraic manipulations, that negation (recall that it is defined as¬Aa = a→A fA) turns designated truth values into anti-designated, and vice versa. Here’s
a graphical depiction of the regions in a UL-chain, such as the chain C and its isomorphic
copy over [−0.1,1.1] defined above, that will be helpful later:

�

�

t

f

designated degrees

anti-designated degrees

Figure 1: UL-chain

6 The fuzzy approach revisited

In this final section, we show how the fuzzy account of vagueness can be extended so that
it provides an adequate analysis of comparative statements and of the meaning of gradable
predicates in general—including but not limited to vague predicates. As mentioned above,
both issues are addressed by means of the same strategy: adopting a UL-algebra as our
structure of truth values.

But, first of all, we must show that our newly adopted uninorm-based fuzzy logic retains
the advantages of t-norm-based logics, such as Łukasiewicz’s. In particular, we must show
that there is an adequate UL-chain-based logic on which we can recover the solution to
sorites described in Section 2. As it happens, the bounded IUL-chain C, described in the
previous section, is a suitable candidate. Here we show how we can use it to this end,
but first, let us clarify what our algebra of truth values looks like. Recall that, according
to the definition of &C on C = R ∪ {−∞,+∞}, 1 is the unit element (tC = 1) and thus,
as explained above, it follows that 1 is also the minimum designated value (since 1 is not
the top of the algebra, we have multiple designated values, namely, D = [1,+∞]). On
the other hand, the set of anti-designated values is not determined by &C , but we have
stipulated it taking fC = 0, and hence D

′ = [−∞,0]). Given our aims (recall: correctly
accounting for the sorites while at the same time modelling comparative statements and
gradable predications) we needed fC to obey a couple of constraints: fC ≠ −∞ and fC < tC
(ensuring that D′ contains multiple elements, that it cannot overlap with D and that there
must be values that are neither in D nor in D

′—in other words, that the resulting structure
is of the form depicted in Figure 1).
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Now, consider the following sorites argument, in which each person n has exactly n

euros (so each person forming the sorites series has one euro less than the previous person):

Person 102000 is rich.

If person 102000 is rich, then person 101999 is rich.

If person 101999 is rich, then person 101998 is rich.

⋮
If person 2 is rich, then person 1 is rich.

∴ Person 1 is rich.

First, we need to formalize the argument in a predicate language. Take a language P
with object constants p1, . . . , p102000 and a unary predicate R (for ‘rich’).

The argument can now be formalized as:

R(p102000)
R(p102000)→ R(p101999)
R(p101999)→ R(p101998)
⋮

R(p2)→ R(p1)
∴ R(p1)
Now, take a P-structure M, with a domain M containing exactly the 102000 people

under consideration and such that, for each 1 ≤ i ≤ 102000, (pi)M is person i. It only
remains to define HM∶M → C as an adequate truth assignment for the atomic statements
that appear in the argument (i.e. the truth value of R(pi) will be HM(i)). Since we now
have more than one designated and anti-designated values, we are going to describe a truth
assignment that takes advantage of this fact (although this is not compulsory in general,
of course), for the sake of illustration.

So suppose that any person who has 101001 euros or more is considered, by most
speakers, to be clearly rich. Similarly, suppose that any person who has 1000 euros or less
is taken as a clear-cut case of non-rich by most speakers. Finally, suppose that speakers
hesitate about whether anyone who has between 1001 and 101000 euros is rich. In such
scenario, the following would be a suitable assignment.26

Persons from 1 to 1000 should get mapped into [−∞,0], those from 1001 to 101000
into (0,1), and those from 101001 to 102000 into [1,+∞]. If we choose the truth degrees
for the borderline cases to be evenly distributed throughout the interval (0,1), they will

26However, note that this is not the only suitable assignment. For the sake of simplicity, we shall not
make this explicit in our formulations, but we advocate a view—called ‘fuzzy plurivaluationism’—which
leaves room for the acceptance of multiple equally-suitable models. On this view, instead of each vague
discourse being associated with a unique intended fuzzy model, it is associated with multiple acceptable
fuzzy models. The acceptable models are all those that our usage and usage dispositions do not rule out
as being incorrect interpretations of our language. These models must be adequate, in the sense that they
must respect the meaning-determining facts (i.e. what speakers say, and the circumstances in which they
say these things; what speakers are disposed to say in possible circumstances; etc). For example, they must
all assign the adjective ‘rich’ a model such that any individual who all speakers agree is paradigmatically
rich is assigned a designated value. Moreover, for any two people such that one is clearly richer than the
other, all adequate models must assign ‘rich’ a model that maps the former to a higher degree than the
latter. The idea is that, even though the meaning-determining facts do not suffice to pin down a single
adequate fuzzy model, this does not necessarily lead to abandoning the fuzzy route. We just take all
adequate models to be on a par. For more details, see Smith [2008].

22



be separated by a distance of 1
100000 , which naturally we could also use as the distance

between the truth values of the people mapped into the designated and the anti-designated
area. More precisely, we will have ��R(pn)��CM = −1100 + n

100000 , for each n ∈ {1, . . . ,102000}.
With such an assignment, we have available an interpretation of the sorites argument

that is analogous to the one presented in Section 2. Once again, the problem with the
argument is that, although it is valid, it is unsound. The first premise, R(p102000) is true
to degree 101

100 , so it is definitely true. As for the conditionals, since we did not assign any
two atomic statements the same value (we could have, but we assumed that this was not
the case), the antecedents are always ever so slightly more true than the consequents. Thus
all the conditional premises are true to a constant degree slightly less than 1. Indeed, for
each n ∈ {1, . . . ,102000}, ��R(pn)→ R(pn−1)��CM = 1 − ��R(pn)��CM + ��R(pn−1)��CM = 1 − ( −1100 +

n
100000) + −1100 + n−1

100000 = 1 − 1
100000 .

Therefore, the argument appears compelling because all the premises are definitely true
or very nearly definitely true and, in ordinary contexts, we are naturally inclined to accept
something as true when it is very nearly true. However, the argument is unsound, because
not all premises are definitely true.

Hence by using →C as the interpretation of the conditional, we can recover what we
argued to be a suitable treatment of sorites in Section 2. Note, however, that our particular
choice of algebra, the IUL-chain, is not essential to the proposal. There is a range of options
to explore and it is possible that future research will lead to other suitable candidates.
All we need is that our algebra has the same structural properties as C. In particular,
one may argue that introducing an algebra of truth values over the whole real line (even
extended with bounds) is something of an overkill, especially because ultimately our truth
assignment has only taken values in the interval [0,1] plus some values slightly bigger than
1 and some values slightly smaller than 0. This may be the case in this particular example,
but, as illustrated in the rest of this section, we wanted to offer an algebra of truth values
capable of supporting models for a big variety of gradable predicates for which it may be
natural to employ more values, including the bounds. Moreover, C has the advantage that
its operations are extremely simple, as we have just demonstrated. In any case, readers
uncomfortable with the choice of C have an easy way out: pick instead an isomorphic
copy on any smaller real interval of your liking, such as the traditional [0,1] itself or any
slightly expanded interval like [−0.1,1.1]. The latter has the advantage of being quite
intuitive, as it captures more directly the idea behind the up-to-eleven reference. However,
as mentioned, there is a trade-off: we gain an apparently more manageable scale, but we
lose the simplicity our logical operations enjoyed before.

To finish, observe that, given our interpretation of the conditional as coinciding with
that of the Łukasiewicz conditional, we retain the advantage of being able to account for
the formulation of the sorites argument which replaces the conditionals ‘If person n is rich
then person n−1 is rich’ with the negated conjunctions ‘It is not the case both that person
n is rich and person n− 1 isn’t rich’. As mentioned in Section 2, this follows from the fact
that the Łukasiewicz interpretation of ‘If ↵ then �’ deems it equivalent with ‘It is not the
case that (↵ and not �)’.

We conclude that nothing is lost by the adoption of a logic based on IUL-chains: we can
still account for the sorites paradox as is customarily done in fuzzy theories of vagueness.
Next we show that not only nothing is lost, but in fact there are some things to be gained.

6.1 Non-borderline comparatives

In this section, we show how a semantic analysis based on an IUL-chain such as C can
accommodate a proper treatment of comparatives.

Recall that with a fuzzy theory of vagueness of the sort described in Section 2, we
could not account for true non-borderline comparatives, that is, true comparatives between
objects which are definite instances of a certain predicate. In the new setting, we can. In
order to present our analysis in detail, let us first describe the compositional interpretation

23



we propose for comparatives (it is as one would expect, but it is still worth making it
explicit). Our analysis of comparatives depends on a prior analysis of the positive unmarked
position, e.g. ‘Alex is tall’, ‘The cup is full’, ‘The stick is straight’. For us, a positive
unmarked statement will denote a function from the domain of individuals U to the algebra
of truth values C (type �e, t�):27

J‘tall’K = �x.tall(x)
Now, building on this basic form, the comparative morpheme is analyzed as a function

from a property to a binary relation between individuals (type ��e, t�, ��e, e�, t��):
J‘-er/more than’K = �f .�x.f(x) > �y.f(y)28

Thus, comparative statements are analyzed as binary relations between individuals
(type ��e, e�, t�). For instance, the comparative with respect to tallness is analysed as:

J‘taller than’K = �x.tall(x) > �y.tall(y)
We can finally go back to the issue of non-borderline comparatives. Let us recall what

the problem was with another example. Take Jeff Bezos and Bill Gates, two definitely rich
people. In many contexts, the following would be taken as true:

‘Bezos is richer than Gates.’

Let’s take r as the characteristic function of the extension of ‘rich’ and b and g as
picking out Bezos and Gates, respectively. According to the compositional analysis just
described, this comparative would be true iff r(b) > r(g) is true. Since both r(b) and r(g)
are definitely true, both are evaluated inside D. The problem was that in a fuzzy logic
such as Łukasiewicz’s, D = {1}, and hence r(b) = r(g). The advantage of working on the
IUL-chain C is that we now have available a plurality of truth values corresponding to
full truth and full falsity and hence have room for assignments that map definite instances
(respectively, definite counterexamples) of a predicate to different values. Regarding the
example we just saw, r can now be defined so that it maps b and g to different values
d, d

′ ∈D, respectively, such that d > d′, as desired.

6.2 Gradable precise predicates

Finally, we show how a uninorm-based approach opens the door to a semantic analysis
of gradability in general, not just vagueness. As explained in §4, with a fuzzy logic like
Łukasiewicz’s, we could only account for the meaning of two types of predicates. This
was because there was only one structurally salient way of restricting the range of our
interpretation functions: restricting them to the top and bottom of the real unit interval.
This left us with only two types of scales, one for vague predicates (i.e. the unrestricted[0,1]) and one for crisp predicates (i.e. {0,1}). In our new setting, based on the bounded
IUL-chain C, there are more ways in which we can restrict the range of our interpretation
functions, since there is a larger variety of structurally different subsets of the domain of
C. For example, not only can we define interpretation functions that map objects to a
single designated degree, but we can now also define an interpretation function that maps
objects to multiple designated degrees.

27Although this may seem very obvious in this setting, other proposals are not able to offer such a
simple analysis. For instance, Kennedy [2007] needs to pose a null morpheme transforming so-called
‘bare adjectives’, which denote measure functions, into proper predicates, understood as classical crisp
predicates.

28This particular choice of analysis forbids comparatives involving different predicates (e.g. ‘Alex is taller
than he is smart’), but we could easily modify it so as to leave room for these (by analysing the comparative
as a function from a pair of properties to a binary relation). Nevertheless, since this topic falls outside the
scope of this article, we will stick to the analysis above.
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In this section, we show that by following the same procedure as before (i.e. restriction
of the interpretation functions’ co-domains) and working on C instead of [0,1], we can
distinguish more types of predicates than just vague and crisp. The new kind of predicates
we are now able to analyze are gradable precise, that is, predicates which can occur in
degree constructions while at the same time not having borderline cases, not having blurry
boundaries and not giving rise to sorites paradoxes. Amongst gradable precise predicates,
we can distinguish various salient types of predicates, but, before describing them, let us
make a few caveats about the predicates we are prepared to analyze at this point.

First of all, our semantics will cover only linear predicates, that is, predicates all of
whose applications are comparable. More precisely, F is linear iff for any objects a and b,
exactly one of the following is assertible: ‘a is more F than b’, ‘b is more F than a’ or ‘a
is exactly as F as b’. Secondly, for the sake of simplicity, we limit our analysis to monadic
predicates—the treatment of polyadic ones does not pose any additional difficulties. More-
over, we focus exclusively on adjectival predicates (i.e. predicates consisting of a copula
and an adjective), since an account of other kinds of predicates would take us too far afield.
Finally, note that strictly speaking our semantics does not analyze predicates simpliciter,
but uses of predicates. Most predicates can be used in ways that differ with respect to their
form of gradability in different contexts. For instance, ‘empty’ can be used in two slightly
different ways. In one way, which we label ‘strict’, ‘empty’ means ‘completely devoid of
content’. This is the sense in which you would use the predicate, say, in a lab setting. By
contrast, one can use it in a more relaxed way, to mean ‘practically devoid of content’. For
instance, you would use it in this way to refer to a theater with only two people attending
a play. We label this other use ‘loose’.29 Thus, when giving examples, sometimes we will
have to clarify the use to which we are referring.30 Nevertheless, we have and will continue
to speak as if we are analyzing predicates simpliciter, for the sake of conciseness—just keep
in mind that we must always be understood as speaking of uses of predicates.

We are finally ready to describe the taxonomy of gradable precise predicates our account
is equipped to deal with.31 As one would expect, some predicates clearly fall in a unique
category and can be taken as paradigmatic examples thereof, while others are not easily
classifiable. We will always try to go for prototypical cases in our presentation.

First of all, we can distinguish two general kinds of gradable precise predicates. To begin
with, we find, as a limiting case, crisp or bigraded predicates, that is, predicates which
have only two degrees of applicability (e.g. ‘even’ (for numbers) or ‘Canadian’ (in the legal
sense, as applied to people)). This is only a degenerate case of gradable predicate, since
in fact these are predicates that cannot appear in degree constructions (at least not under
their usual understanding). The rest of precise predicates are multigraded and thus, in a
sense, properly gradable. Among these, we find three salient subclasses: highest-standard,
lowest-standard and intermediate-standard predicates.

Highest-standard predicates demand that the object reaches a maximum amount of
a certain quality for their applicability (e.g. ‘full’, ‘flat’, ‘clean’, ‘straight’). By contrast,
lowest-standard predicates demand that the object surpasses a minimum such amount (e.g.
‘dirty’, ‘bent’, ‘bumpy’, ‘impure’).32 Note that highest and lowest-standard predicates are
not exactly analogous: the former demand that a certain degree be reached while the latter
demand that a certain degree be surpassed.

29For more details on this distinction, see Burnett [2016, Ch. 3].
30This is one of the ways in which context interacts with the semantic analysis of gradable predicates,

but it is not the only one. For instance, another point where context must be taken into account is to
determine the exact form of the extension of (a use of) a predicate (and, possibly, anti-extension, depending
on the kind of analysis). This is the sense in which ‘tall’ has different extensions depending on whether we
are talking, say, about basketball players or about 10 year-old children. The latter collections of objects
are usually referred to as ‘the class of comparison’ (see Kennedy [2007], Burnett [2016]) and are usually
provided by the context.

31This taxonomy is based, in part, on those in Paoli [1999] and Kennedy and McNally [2005].
32In all these cases, we are focusing on the precise use of the predicates in question.
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One way to classify predicates into these two classes is to observe the distribution of
certain patterns of inference from comparative statements.33

For highest-standard predicates, the following type of inference is intuitively valid:

‘Your glass is fuller than my glass.’ � ‘My glass is not full.’

But not this pattern:

‘Your glass is fuller than my glass.’ � ‘Your glass is full.’

The opposite occurs with lowest-standard ones:

‘This stick is more bent than that stick.’ � ‘This stick is bent.’

‘This stick is more bent than that stick.’ � ‘That stick is not bent.’

Finally, we have intermediate-standard predicates, which demand that an intermedi-
ate standard be surpassed for their applicability (e.g. ‘acute’ (for angles), ‘basic’ (in the
chemical sense, applied to solutions)). For instance, a solution is basic if it has a pH higher
than 7, which is intermediate within the pH scale. For these predicates the inferences from
comparatives just described do not go through, just as it occurs with vague predicates (the
first two examples concern a vague predicate and the last two, an intermediate-standard
predicate):

‘Jo is taller than Alex.’ � ‘Jo is tall.’

‘Jo is taller than Alex.’ � ‘Alex is not tall.’

‘Vinegar is more basic than hydrochloric acid.’ � ‘Vinegar is basic.’

‘Bleach is more basic than ammonia.’ � ‘Ammonia is not basic.’

However, intermediate-standard predicates can be distinguished from vague ones be-
cause, as we said above, being precise, they do not display the surface characteristics
of vagueness. For example, they fail to have borderline cases: e.g. there are no aque-
ous solutions for which speakers (with the adequate knowledge) would hesitate to assert
or deny that they are basic, neutral or acidic. Consequently, the inference pattern in-
volving antonyms that we saw above is valid for intermediate-standard adjectives (un-
like for vague ones). In the following example, suppose that Alex is a baby and that
‘healthy’/‘underweight’ are being used in the precise medical sense of meeting (respec-
tively, not meeting) a certain weight guideline for babies:

‘Alex is not underweight.’ � ‘Alex is healthy.’

To sum up, our analysis will cover only linear predicates, including vague and precise
ones. Amongst the latter we find crisp and multigraded predicates, amongst which in turn
we find highest, lowest and intermediate-standard predicates.

We said that we would distinguish between different kinds of predicates by restricting,
for each kind, the part of the IUL-chain C their interpretations can map individuals to.
Thus, gradable predicates do not in general use the whole of C, but subsets thereof. In
fact, we take vague predicates to be the only ones that are completely unrestricted from
the point of view of the algebra: they can map individuals to the whole of C. By contrast,
precise predicates map objects to a proper subset of C, in particular, to a subset of D∪D′
(recall that D is the set of designated truth values and D

′, the set of anti-designated truth
values).

33These distributions are described in Kennedy [2007].

26



Having the whole algebra available for the interpretation of vague predicates allows us
to capture the fact that for a very small change with respect to the applicability of the
underlying vague property, there can only be a very small change with respect of truth.
This is only possible if they are associated with a set of truth values that has no gaps in it.
And it is precisely this feature what opens the door to the corresponding sorites paradox
(under our analysis).

Naturally, we want adequate models that respect the meaning-determining facts. For
us, this means that, given a vague predicate F , for each individual a that gives a determi-
nately true (resp. false) instance of F , the sentence Fa must be given a designated (resp.
anti-designated) truth value. Moreover, the mapping must be such that if an individual a
is F er than an individual b, then Fa must be given a value higher than Fb. This mono-
tonicity condition makes sense of some of the so-called ‘penumbral connections’ of vague
predicates (see Fine [1975]), i.e. the fact that if Alex is considered bald, and Jim has less
hair than Alex, then Jim should also be considered bald.

Now, how do we distinguish between the various types of precise predicates? Each
type is associated with a particular restriction on D∪D′ (see Figure 2 for some illustrative
diagrams of the restrictions on the codomains associated with each kind of predicate).
First, bigraded predicates map individuals to {−∞,+∞}, i.e. objects mapped to +∞ by
the function corresponding to ‘even number’ are even numbers and those mapped to −∞
are odd numbers.

Second, highest-standard predicates map individuals onto D
′∪{+∞}.34 In other words,

they can have as image the whole set of anti-designated truth values and one designated
truth value. It is easy to see why: the anti-designated truth values represent all the ways
in which an object may fail to have the corresponding property (e.g. all the ways in which
a cup may fail to be empty) and the unique designated truth value denotes the single way
in which an object may have the property (e.g. the only way in which a cup may be empty,
that is, completely devoid of content). This range restriction suffices to capture the fact
that highest-standard predicates demand that objects hit the maximal standard in order
to be instances of the predicate.

Third, the opposite occurs with lowest-standard predicates. The relevant subset of C
is D∪{−∞}.35 The only anti-designated truth value represents the only way of not having
the property in question (e.g. the only way for a stick not to be bent: being completely
straight), whereas the designated truth values can be used to capture the variety of ways
in which an object may have the property (e.g. all the ways in which a stick may be bent).
Once again, this restriction captures the fact that lowest-standard predicates demand that
objects surpass the minimal standard in order to be instances of the predicate.

Finally, intermediate-standard adjectives can map objects to the whole set D∪D′. This
is because for this kind of predicates there are many ways in which they may hold true
or false of an object (e.g. there are various ways for a solution to be basic, all mapped
to designated truth values, and also to not be basic, all mapped to anti-designated truth
values).

Obviously, besides the restrictions on the kind of subalgebra employed in each case, in
modelling gradable precise predicates we have to impose again the same kind of monotonic-
ity condition that we introduced for vague predicates. No other restrictions are required,
leaving a lot of freedom for particular assignments of truth values.

This finalizes the presentation of our semantics of acceptable models for gradable pred-
icates, that is, those that give a reasonable semantic analysis of the gradable predicates
in question. Note that this approach changes the notion of consequence in our first-order
language setting. Let us elaborate on this point. For the purposes of this explanation,
we label as �log the logical consequence given by all P-structures �C,M� where C is our

34We could have chosen any other designated value. For present purposes, it does not need to be the
top of the chain. However, we choose the top for simplicity and to capture the intuition that bigraded
predicates are a limiting case of any other type of gradable precise predicates.

35Once again, we could have chosen any other anti-designated value.
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Figure 2: The scales associated with predicates with different types of gradability, where the bold parts
mark the degrees to which the predicates of that type can map individuals.

chosen IUL-chain and the predicates of the language are interpreted without any restric-
tions. Moreover, we label as �sem the consequence relation given by the same kind ofP-structures, but in which the language is required to be interpreted according to the
semantic analysis above. More precisely, given a sentence  and a finite set of sentences �
involving a set of predicates {P 1

, . . . , P
n}, we define:

• � �log  iff for every safe P-structure �C,M�, if for each ' ∈ � ��'��CM ∈ D, then�� ��CM ∈D,

• � �sem  iff for every safe P-structure �C,M� such that each P
i
M is a mapping of

the kind corresponding to P
i according to the stipulations above, if for each ' ∈ ���'��CM ∈D, then �� ��CM ∈D.

Clearly, � �log  implies � �sem  , but not the other way around. Let us illustrate it
with some examples. Above we claimed that, for instance, the following inference is valid:

‘Your glass is fuller than my glass.’ � ‘My glass is not full.’

while the following one is not:

‘Your glass is fuller than my glass.’ � ‘Your glass is full.’

Let us show how our logical/semantic apparatus handles this situation. To formalize
these sentences of natural language, let us take a predicate language with two object
constants c, d, a unary predicate F , and a binary predicate MF . With these symbols, the
premise of both inferences would be formalized as MF (c, d), the first conclusion would be¬F (d), and the second would be F (c).36 Now, the situation is the following:

1. MF(c, d) �log ¬F (d),
2. MF(c, d) �log F (c),
3. MF(c, d) �sem ¬F (d),
4. MF(c, d) �sem F (c),

That is, from the logical point of view (i.e. just in virtue of the logical form of the involved
sentences) both inferences are invalid; by contrast, the former is semantically valid, while
the latter is not. The failure of the first two inferences needs no justification, since this

36Formulas of the form MF(c, d) correspond to our old f(c) > f(d) (i.e. the result of multiple �-reductions
on �g�f .�x.g(x) > �y.f(y)). These two representations belong to two different levels of linguistic analysis.
The lambda calculus expressions make explicit the compositional steps by which we get to the semantic
analysis of complex statements, in this case, comparatives. By contrast, the first-order notation employed
here simply expresses the resulting propositional content of those statements. In a sense, we can see the
lambda expressions as providing instructions to arrive at the semantics of a binary predicate MF , given a
corresponding monadic predicate F .
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is already the situation in classical logic and here we are dealing with a weaker logical
system. Let us consider now the third inference. Assume that �C,M� is a safe P-structure
such that ��MF (c, d)��CM ∈ D and it complies with the semantic stipulations corresponding
to the involved predicates. By the analysis of comparatives, we have that ��F (c)��CM >��F (d)��CM. Moreover, since ‘full’ is a highest-standard predicate, we have imposed that
FM maps individuals onto D

′ ∪ {+∞}. Therefore, it is clear that ��F (d)��CM ∈D′ and hence��¬F (d)��CM = ��F (d)→ 0��CM ∈D. The validity of these kind of inferences shows the usefulness
of the consequence relation �sem : we know that in any state of things in which M(c, d) is
true, because of logical and linguistic reasons, ¬F (d) must be true as well, which we could
not know without involving non-logical facts. Finally, to show that MF(c, d) �sem F (c) we
need to produce a counterexample in the class of acceptable models: it suffices to require
that ��F (d)��CM < ��F (c)��CM < t.

There is a sense in which the semantic notion of consequence can be reduced to the logi-
cal one. Indeed, the classes of acceptable models could be determined (up to isomorphism)
by sentences of the first-order language involving predicates for the corresponding gradable
properties and, for each gradable predicate F , a binary predicate MF used (as above) to
represent comparatives.37 Roughly speaking, we would need to write down axioms to force
MF to behave like a strict order, force predicates to satisfy the required monotonicity
conditions, force each type of gradable predicate to behave as described above, etc.

7 Conclusion

In the formal semantics literature, the dominant approach to vague adjectives involves a
semantics employing degrees, built on an underlying framework involving bivalence and
classical logic. These degrees are not degrees of truth and the approach is very different
from fuzzy logic based theories of vagueness. In this paper we have posed a challenge
to such approaches: come up with a solution to the sorites that is as good as the fuzzy
solution outlined above. In particular, it must conform to the accepted modus operandi of
formal semantics, whereby the semantic theory is an explicit formulation of something that
competent speakers implicitly grasp, that guides and explains their linguistic behaviour.
We have suggested that the kinds of epistemicist and contextualist solutions typically
favoured by proponents of such formal semantic theories fail in this regard. This is not to
say that no solution is possible: but there is a real challenge here for proponents of the
bivalent approach—one that has not yet been met. On the other side of the coin, fuzzy
theories of vagueness face challenges of their own: analyse the comparative along the lines
of (C), or else in some other equally compelling manner—and provide analyses of predicates
which are both gradable and precise. We have responded to these challenges by presenting
a version of the fuzzy logic approach that makes use of a new structure of truth degrees,
the bounded IUL-chain C. The fact that this scale has a more general structure than [0,1]
makes it suitable to accommodate (C) and to adequately analyse the main types of gradable
precise predicates, while still allowing us to retain the usual fuzzy solution to sorites.

Our conclusion is twofold. On the one hand, we claim that the burden is on the degree-
based approach to show that it can match the advantages of the fuzzy solution to the
sorites. On the other hand, we believe the fuzzy account developed in this article carries a
significant improvement over prior fuzzy theories, providing not only a satisfactory account
of the sorites, but also an elegant and unified analysis for a variety of natural language
phenomena. Of course, the linguistic constructions relevant for a complete account of
gradability are numerous and much work in providing a fuzzy account for them remains to
be done. However, in this article we have set the foundations for such an account, thereby
taking the first steps towards vindicating the fuzzy theory of vagueness and gradability as
a serious contender in the formal semantics arena.38

37Nevertheless, the question of the axiomatizability of the logic of C is left for future research.
38We are grateful to the anonymous referees for helpful comments. The research leading to these results
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