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Abstract. In this position paper we present a logical framework for
modelling reasoning with graded predicates. We distinguish several types
of graded predicates and discuss their ubiquity in rational interaction
and the logical challenges they pose. We present mathematical fuzzy
logic as a set of logical tools that can be used to model reasoning with
graded predicates, and discuss a philosophical account of vagueness that
makes use of these tools. This approach is then generalized to other kinds
of graded predicates. Finally, we propose a general research program
towards a logic-based account of reasoning with graded predicates.
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1 Introduction

A contemporary view of reasoning goes beyond the analysis of argumentation
in discourse and takes rationality as a broad phenomenon that encompasses
competence not only at organizing discourse, but also at making decisions, and
taking actions towards goals, in light of our beliefs and knowledge. A logic-
based account of reasoning should recognize that all these aspects of rationality
involve heavy use of graded properties. Indeed, predicates that are a matter
of more-or-less (such as red, old, tall, or rich) are ubiquitous in most domains
of discourse and everyday reasoning scenarios. They include vague predicates
(such as the examples just mentioned), but also predicates with sharply-defined
boundaries. Take, for example, the predicate acute angle whose extension is
exactly the set of angles strictly smaller than a right angle, and yet its instances
admit mutual comparison: if α and β are angles of, respectively, 30◦ and 89◦,
it is true that both are acute angles, and it also makes sense to assert that α
is strictly more acute than β. Non-graded all-or-nothing properties are actually
rare in everyday communication and usually belong to quite restricted domains
of discourse (typically, mathematics and other sciences as well as legal discourse).
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Arguably, graded properties are epistemologically necessary, as they gather
together many similar notions that would otherwise collapse the conceptual sys-
tem (and the language) with too many properties (and predicates). It is neces-
sary for reasons of economy to reason with one predicate red, instead of having
infinitely many predicates, for each possible level in the colour spectrum (or as
many as the human eye can distinguish). Reasoning with such graded proper-
ties is successfully and correctly carried out in many contexts (notwithstanding
the fact that natural language has enough devices to provide higher levels of
precision whenever necessary).

We view Logic as the science of correct reasoning and, as such, we expect it
to provide us with the formal means to deal with all forms of valid consequence
that can potentially be carried out by rational beings. During most of its history
as a formal science, Logic has tried to explain correct reasoning by means of
the classical paradigm based on the bivalence principle. Despite its many merits
and achievements, this approach does violence to many properties, forcing sharp
all-or-nothing definitions (splitting graded properties into many binary ones) in
contexts that normally do not require them. Indeed, natural language allows
satisfactory communication and correct reasoning using graded predicates. The
classical logical analysis seems, therefore, too artificial—too detached from actual
reasoning.

On the one hand, there have been several attempts in philosophical logic
and analytic philosophy at understanding vague predicates and their poten-
tial for generating logical paradoxes—although most of these attempts do not
treat vague predicates as graded. On the other hand, Mathematical Fuzzy Logic
(MFL) was proposed [17] as a study of many-valued logical systems able to
handle graded properties (and related notions of partial truth, vagueness, fuzzi-
ness, imprecision, etc.). It has attracted a considerable number of researchers
who have mostly disregarded its original motivations and focused on developing
a deep and extensive corpus of mathematical results (see e.g. [6]), covering all
technical aspects of such logical systems. Philosophers of vagueness have often
attacked MFL as an inadequate framework for dealing with vagueness, based on
allegations that usually disregard most of the mathematical development of MFL
and focus on a few characteristics of the logical systems that were proposed at
the beginning of the field. However, there has been a recent philosophical account
of vague predicates [33] that treats them as graded, employs the modern logical
machinery of MFL, and offers good answers to the traditional arguments against
degree-based approaches.

In this paper we will defend a logical approach to reasoning with graded
predicates that goes beyond that offered in [33] by considering other graded
predicates besides vague ones. The structure of the paper is as follows. After
this Introduction, Sect. 2 discusses the different kinds of graded predicates that
we want to model. Section 3 presents a brief up-to-date account of mathemat-
ical fuzzy logic and Sect. 4 shows how it can be used to provide a satisfactory
explanation of vague predicates and a solution to the paradoxes they generate.
Section 5 discusses possible ways of modelling other kinds of graded predicates
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by means of the tools of MFL and Sect. 6 proposes a general program, extending
the first steps outlined in this paper, to develop a full logic-based account of
reasoning with graded predicates.

2 Graded Predicates

The essential feature of graded predicates is that they may apply with different
intensities to different objects. If F is a graded unary predicate and a and b
are objects in the domain of discourse relevant for F , it may happen that a is
strictly more F than b, i.e. the degree of F -ness of a is greater than that of b;
it could also be the other way around; or a and b could be equal; or they could
be incomparable. All these possible comparisons do not entail the existence of
any numerical scale, but only a purely ordinal notion of degree. Also, there are
graded predicates of any higher arity, characterized in the same way, that apply
to tuples instead of single individuals.

We may distinguish the following different kinds of graded predicates:1

1. Classical predicates: As an extreme case of our classification we must
include the classical predicates. They obey the bivalence and excluded middle
principles and hence yield a perfect division of the domain into the elements
that satisfy the predicate and those that do not. They are a limit case of
graded predicates that admit only two degrees. Classical predicates corre-
spond to sharply-defined all-or-nothing properties and are ideal for analysing
reasoning in domains that typically employ such notions, for example math-
ematics or legal discourse. However, they have often been abused to model
other kinds of graded properties in an unnatural way.

2. Vague predicates: Vague predicates exhibit three surface characteristics:
(a) their extension has blurry boundaries, (b) they have borderline cases
(objects such that we can neither confidently assert nor confidently deny that
they fall under the predicate), and (c) they generate sorites paradoxes, as
follows. A sorites series for a predicate F is a series of objects x0, x1, . . . , xn

such that:

– F definitely applies to x0

– F definitely does not apply to xn

– for each i < n, the objects xi and xi+1 are extremely similar
in all respects relevant to the application of F .

Such a series generates the following argument: (1) x0 is F ; (2) for each i < n,
if xi is F , then so is xi+1; therefore xn is F . When F is vague, this argument
becomes a logical paradox, because it has the form of a valid argument whose
first premise is clearly true and whose second premise also seems true, and yet
its conclusion is clearly false.

Typical examples of vague predicates are those mentioned in the Introduc-
tion: red, old, tall and rich. Vague predicates can be subdivided into linear
1 This classification is a modification of that presented by Paoli in [26,27].
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(or unidimensional) and nonlinear vague predicates. The application of a
linear vague predicate to an object depends only on the extent to which the
object possesses some underlying attribute, which varies along a single dimen-
sion. For example, (once we fix a context) whether someone is ‘tall’ depends only
on her height (and heights vary along a single dimension) and whether some-
one is ‘old’ depends only on his age (and ages vary along a single dimension).
By contrast, the application of a nonlinear vague predicate to an object does
not depend only on the position of that object along a single dimension. Some
(perhaps all) nonlinear vague predicates are multidimensional: for example,
whether an object is ‘red’ depends on its position in a three-dimensional colour
space—that is, it depends on its position along three different dimensions (e.g.
hue, saturation and brightness). Arguably, there is also a second kind of nonlin-
ear vague predicate: one whose application conditions cannot be factored into a
series of linear dimensions. For example, some might argue that ‘beautiful’ is such
a predicate. We do not take a position either way on whether the nonlinear vague
predicates are completely exhausted by the multidimensional vague predicates
(i.e. on whether the class of nonlinear nonmultidimensional vague predicates is
empty). Note that nonlinear vague predicates may have incomparable instances:
for example, it may be possible to come up with two individuals such that there
is no way to determine who is more clever, because they are clever in different
ways.

Vagueness has been clearly distinguished from other phenomena (such
as uncertainty, context sensitivity, ambiguity, and generality) and has been
addressed by several competing theories (see e.g. [14,21,22,28,29,33,34,36]). In
Sect. 4 we will summarize a degree-based treatment of vague predicates.

3. Graded precise predicates: These are predicates that have sharply defined
limits but that, unlike classical predicates, admit more than two degrees of
application. An example, already mentioned in the Introduction, is the unary
predicate acute angle: it is sharply defined (as applying to angles strictly
smaller than a right angle) but it applies with different intensities to different
acute angles (an angle of 30◦ is more acute than an angle of 89◦, although
both are acute) and also to different non-acute angles (an angle of 170◦ is
less acute than an angle of 91◦, although both are non-acute). Other sciences
also employ graded precise predicates: for example acid and base in chem-
istry, defined as having a pH smaller (resp. greater) than 7. Finally, to give
an example from legal language, consider the predicate guilty. The judicial
system does not want borderline cases, and will do everything it takes to pre-
vent them and always declare an accused person either guilty or not. However,
there are different degrees of guilt, which translate into more or less severe
sentences.

Their well-defined limits save graded precise predicates from the difficulties
of vagueness (in particular, the generation of sorites paradoxes), but they are still
quite different from classical predicates and require a different logical treatment.
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3 Mathematical Fuzzy Logic

Petr Hájek founded MFL [17] as an attempt to provide solid logical foundations
for fuzzy set theory and its engineering applications. Among other motivations,
fuzzy set theory had been explicitly proposed as a mathematical apparatus for
dealing with vagueness and imprecision, but it lacked a focus on syntactical
formalization of discourse and a notion of logical consequence, thus keeping
it far from being a logical study of reasoning under vagueness. Hájek and his
collaborators developed MFL as a genuine subdiscipline of Mathematical Logic,
specializing in the study of certain many-valued logics.

The first examples of fuzzy logics were two many-valued propositional sys-
tems that had been studied already for quite some time before the inception
of fuzzy sets: �Lukasiewicz [24] and Gödel–Dummett logics [11]. Both were con-
sidered fuzzy logics because—similar to the definition of membership functions
in fuzzy sets—they were semantically defined as infinitely-valued logics taking
truth-values in the real unit interval [0, 1]. But they had more characteristics in
common: a language with conjunction ∧ and disjunction ∨ respectively inter-
preted as the operations minimum and maximum, constants for (total) falsity
and truth 0 and 1 respectively interpreted as the values 0 and 1, an implication
→, and, in the case of �Lukasiewicz, another conjunction connective (fusion) &
satisfying the following residuation law with respect to the implication, for each
a, b, c ∈ [0, 1] (in the case of Gödel–Dummett logic it is satisfied by ∧):

a & b ≤ c if, and only if, a ≤ b → c.

Both these operations, used to interpret conjunctions, are particular instances
of binary functions called triangular norms (or t-norms for short): binary com-
mutative, associative, monotone functions on [0, 1]; and moreover they are both
continuous, which guarantees the existence of a binary function satisfying the
residuation law. Therefore, Hájek and other MFL researchers started proposing
alternative [0, 1]-valued logics by keeping the interpretation of ∧, ∨, 0 and 1 as
in the previous systems, but taking other continuous t-norms for & and their
corresponding residuum for → [5,17]. It was later observed that the necessary
and sufficient condition for a t-norm to have a residuum was not continuity,
but just left-continuity. This motivated the introduction, by Esteva and Godo,
of MTL [12], a weaker logic that was later proved to be complete w.r.t. the
semantics given by all left-continuous t-norms and their residua [19]. Therefore,
MTL was proposed as a basic fuzzy logic upon which other fuzzy logics could
be obtained as axiomatic extensions.

Besides their intended t-norm-based semantics over [0, 1] (also called standard
semantics), all these fuzzy logics were also given an algebraic semantics based on
classes of MTL-algebras, that is, structures of the form A = 〈A,∧,∨,&,→, 0, 1〉
such that

– 〈A,∧,∨, 0, 1〉 is a bounded lattice
– 〈A,&, 1〉 is a commutative monoid
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– for each a, b, c ∈ A we have

a & b ≤ c iff b ≤ a → c (residuation)

(a → b) ∨ (b → a) = 1 (prelinearity)

We say that an MTL-algebra is:

– Linearly ordered (or an MTL-chain) if its lattice order is total.
– Standard if its lattice reduct is the real unit interval [0, 1] with its usual order.

Note that in a standard MTL-algebra & is interpreted by a left-continuous
t-norm and → by its residuum—and vice versa: each left-continuous t-norm fully
determines its corresponding standard MTL-algebra.

MTL is an algebraizable logic in the sense of [3] and the variety of MTL-
algebras is its equivalent algebraic semantics. Thus each finitary extension of
MTL (like all the other logics mentioned so far) also has an equivalent algebraic
semantics which is a corresponding subquasivariety of MTL-algebras. Conversely,
given any subquasivariety K of MTL-algebras, the corresponding finitary exten-
sion L of MTL is obtained by setting that for each set of formulas Γ and each
formula ϕ, Γ 	L ϕ iff for each algebra A = 〈A,∧,∨,&,→, 0, 1〉 ∈ K and each
A-evaluation e we have: if e(ψ) = 1 for each ψ ∈ Γ , then e(ϕ) = 1.

It soon became clear that fuzzy logics were closely related to substructural
logics; indeed it was proven that MTL is the axiomatic extension of the logic
FLew (the full Lambek logic with exchange and weakening, see e.g. [15]) obtained
by adding the prelinearity axiom (ϕ → ψ) ∨ (ψ → ϕ) [13]. Several papers have
considered weaker fuzzy logics as extensions of other substructural logics:

(a) By dropping commutativity of conjunction Petr Hájek obtained a system,
psMTLr [18], which is an axiomatic extension of FLw and was proven to
be complete with respect to the semantics on non-commutative residuated
t-norms [20].

(b) By removing integrality (i.e. not requiring the neutral element of conjunction
to be maximum of the order) Metcalfe and Montagna proposed the logic
UL which is an axiomatic extension of FLe with bounds and was, in turn,
proven to be complete with respect to left-continuous uninorms (that is, a
generalization of t-norms that allows the neutral element to be any element
u ∈ [0, 1]) [25].

(c) By removing associativity (i.e. not requiring conjunction to be interpreted
by an associative operation) as well as commutativity and integrality, one
obtains a very weak fuzzy logic SL� which extends the non-associative Lam-
bek logic [16,23] and is still complete with respect to models over [0, 1]. The
axiomatization and completeness theorems for this logic and for systems
obtained with other combinations of the properties (associativity, integral-
ity, and commutativity) are presented in [7,8].

All these fuzzy logics, weaker than MTL, are still algebraizable in the sense
of [3] and their algebraic counterparts are classes of lattice-ordered residuated
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unital groupoids (not necessarily associative, commutative, or integral) in which
the semantical consequence relation has to be defined in a more general way than
before. More precisely, if K is a class of such algebras, Γ is a set of formulas and
ϕ is a formula, Γ 	L ϕ iff for each algebra A ∈ K and each A-evaluation e we
have: if e(ψ) ≥ 1 for each ψ ∈ Γ , then e(ϕ) ≥ 1. Therefore, in these fuzzy logics
the interpretation of the constant 1 is not the only relevant truth-value when it
comes to defining consequence, but all the elements greater than 1; that is, the
truth-preserving definition of consequence (usual in algebraic logic) uses in any
algebra A the following set of designated truth-degrees: D = {a ∈ A | a ≥ 1}.

A general property shared by all the mentioned algebraic semantics for fuzzy
logics, from �Lukasiewicz and Gödel–Dummett logics to these weaker systems, is
that each algebra can be represented as a subdirect product of chains, i.e. can
be embedded into a product of linearly ordered algebras in such a way that each
projection is surjective. Therefore, all these logics are complete with respect to
the semantics given just by linearly ordered algebras (and, for many prominent
logics this gets even better, as we have mentioned, because they are complete
w.r.t. standard chains). Based on this fact it has been argued that the only
essential feature of fuzzy logics is that they are the logics of chains [2,8].

The field of research determined by this wide family of logics has attracted
many researchers who have extensively carried out for MFL a typical agenda
of mathematical logic: proof theory, model theory, modalities, first and higher
order formalisms, axiomatic fuzzy set and fuzzy class theories, recursion and
complexity, functional representation, different kinds of semantics, connections
with other areas of Mathematics, applications to Philosophy, etc.; see e.g. the
handbook series [6] and references therein.

4 A Degree-Based Account of Vagueness

The fundamental questions that a theory of vagueness should answer are:
(1) What is the meaning (semantic value) of a vague predicate? and (2) How
should we reason in the presence of vagueness? As part of answering these ques-
tions, a theory of vagueness should solve the sorites paradox—and this in turn
involves two tasks: (i) Locate the error in the sorites argument: the premise that
isn’t true or the step of reasoning that is incorrect. This part of the solution
should fall out of the answers to (1) and (2) above. (ii) Explain why the sorites
argument for a vague predicate is a paradox rather than a simple fallacy: that is,
provide an explanation of why competent speakers find the argument compelling
but not convincing—why they initially go along with the reasoning but are still
not inclined to accept the conclusion.

The simplest fuzzy answer to (1) is that the meaning of a vague predicate is a
fuzzy set. However, this simple answer is inadequate. For it is generally accepted
that language is a human artefact: the sounds we make mean what they do
because of the kinds of situations in which we (and earlier speakers) have made
(and would make) those sounds. This generates a constraint on any theory of
vagueness: if the theory says that vague predicates have meanings of such-and-
such a kind (e.g. fuzzy sets), then we must be able to satisfy ourselves that our
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past and present usage (and usage dispositions) could indeed determine such
meanings for actual vague predicates. However it seems that usage and usage
dispositions do not suffice to pick out a single fuzzy set—a particular function
from objects to [0, 1]—as the extension of ‘is tall’ (and similarly for other vague
predicates). For this reason, Smith [33] proposed fuzzy plurivaluationism. Instead
of each vague discourse being associated with a unique intended fuzzy model,
the plurivaluationist idea is that each vague discourse is associated with multiple
acceptable fuzzy models. The acceptable models are all those that our usage
and usage dispositions do not rule out as being incorrect interpretations of our
language (e.g. an interpretation that does not map persons generally agreed to
be paradigmatic instances of ‘tall’ to 1 is incorrect). On this view, a fuzzy set is
the right kind of thing to be the meaning of a vague predicate—but there is not,
in general, just one fuzzy set that is the uniquely correct meaning of a vague
predicate in ordinary discourse. Rather, there are many fuzzy sets—one in each
acceptable model—each of which is an equally correct meaning.

The answer that we propose to question (2) is that we should reason in the
presence of vagueness in accordance with some system of MFL—although not
necessarily the same system in every context: different reasoning scenarios may
require different logics (see Sect. 6 below for more details).

Suppose we have a sorites series x0, . . . , xn for the predicate F and the asso-
ciated sorites argument:

Fx0, Fx0 → Fx1, Fx1 → Fx2, . . . , Fxn−1 → Fxn ∴ Fxn.

If we employ �Lukasiewicz logic with a definition of consequence as preservation of
degree 1, then we get the following solution to the sorites. (i) The problem with
the argument is that, although it is valid, it is unsound: it is not the case that
every premise is true to degree 1. (ii) The argument is nevertheless compelling
because all the premises are either true to degree 1 or very nearly true to degree
1, and in ordinary reasoning contexts we tend to apply a useful approximation
heuristic that involves rounding very small differences up or down—hence we go
along with the premisses, even though they are not all, strictly speaking, fully
true.

Two key arguments in favour of this theory of vagueness are as follows. First,
no other theory can solve the sorites in an equally satisfactory way: all other
extant theories are forced to attribute ad hoc, implausible mistakes to ordinary
reasoners to explain why they go along with the sorites reasoning [30]. Second, no
other theory fits with our best understanding of what vagueness fundamentally
consists in. In Sect. 2 we introduced vague predicates via three characteristics:
blurry boundaries, borderline cases and sorites susceptibility. This can be com-
pared to explaining what water is by saying it’s a clear potable liquid that falls
as rain and boils at 100 ◦C: this helps someone who doesn’t know what water is
to identify samples of it, but it still leaves open the question of the underlying
nature or essence of water—of what water fundamentally is, that explains why
it has these characteristics. The same goes for vagueness: it would be desirable
to understand its fundamental nature and explain why it has the three surface
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characteristics. Smith [32,33] has argued that a predicate F is vague iff it satisfies
the following Closeness principle:

If x and y are very similar in respects relevant to the application of F ,
then Fx and Fy are very similar in respect of truth.

This yields explanations of why vague predicates have their surface characteris-
tics: i.e. assuming only that a predicate P satisfies Closeness, we can derive that
P must have blurry boundaries and borderline cases and generate sorites para-
doxes. Furthermore, only theories of vagueness that admit degrees of truth can
allow that there exist predicates that satisfy Closeness. This, then, is a strong
reason for accepting fuzzy theories of vagueness, which do admit degrees of truth.

Two key arguments against fuzzy theories of vagueness are as follows. First,
there is the artificial precision objection, that it is implausible to associate each
vague predicate in natural language with a particular function that assigns a
unique real number to each object. Fuzzy plurivaluationism avoids this objection,
however, as it associates each vague predicate with many such functions (one per
admissible model). Second, there is the truth-functionality objection, that fuzzy
theories are incompatible with ordinary usage of compound propositions in the
presence of borderline cases. However, this objection is based on an outdated
understanding of fuzzy logics as having only very limited resources—for example,
minimum and maximum as the only possible interpretations of conjunction and
disjunction [31].

5 Modelling Graded Predicates in MFL

In the previous section we have seen that the algebraic semantics of many promi-
nent fuzzy logics (such as �Lukasiewicz, Gödel–Dummett, and other t-norm-based
logics), though it has only one designated element on each algebra, is already
powerful enough to provide a model of vagueness. This unique designated ele-
ment (the maximum value of the lattice order, the number 1 on [0, 1]-valued
models) represents full truth and plays two important roles: it is the value used
for the truth-preserving definition of logical consequence, and it is the neutral
element of the operation that interprets the conjunction &.

We now sketch a proposal for modelling reasoning with graded predicates that
exploits a greater part of the power of MFL. Indeed, we consider models for the
weaker fuzzy logics mentioned in Sect. 3 where the neutral element of conjunction
is an element u ≤ 1, and the set of designated values that define the truth-
preserving notion of consequence is D = {a | a ≥ u}, not necessarily a singleton.

Vague Predicates: The usage of non-integral algebras of truth-values gives
an interesting complement to the theory of vagueness explained in Sect. 4, that
allows one to distinguish between different clear instances of a vague predicate.
Take, for example, the predicate tall (and assume that we have already fixed
a particular context of application). From a fuzzy plurivaluationist perspective,
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such a predicate admits many models which should all agree on clear instances
and clear non-instances, and may assign degrees to borderline cases in different
ways. Take individuals a, b, c, d, and e with respective heights of 2.1, 1.87, 1.78,
1.63, and 1.58 m. All models will agree that a and b are tall and that d and
e are not tall, while c is a borderline case that will receive different degrees of
tallness in different models. Algebraic models of MTL (and its extensions) have
only one designated value for truth (1) and one for falsity (0), so the mentioned
clear cases will only take these values. If T is a unary predicate symbol for
tall, then the formulas Ta and Tb will be evaluated to 1, while Td and Te
will be evaluated to 0, in symbols: ‖Ta‖ = ‖Tb‖ = 1 and ‖Td‖ = ‖Te‖ = 0.
However, if we take instead an algebraic model of UL, defined for example by
a left-continuous uninorm, then the set of designated elements is the interval
[u, 1], where u is the neutral element (the interpretation of 1). This provides a
finer model for the vague predicate that allows one to make distinctions among
clear cases, and clear non-cases, that is, both a and b are definitely tall, hence
‖Ta‖, ‖Tb‖ ∈ [u, 1], but a is much taller than b, which can be captured in the
model by requiring ‖Ta‖ > ‖Tb‖; hence the identification of all clear cases in one
truth-value enforced by MTL and its extensions is no longer necessary. Similarly
with the cases that are definitely not tall. Where f is the interpretation of 0, the
set of degrees [0, f ] gives a whole range to interpret clear non-cases, in particular:
‖Td‖, ‖Te‖ ∈ [0, f ] with ‖Te‖ < ‖Td‖. This suggests, as already pointed out by
Paoli [26], the following revision of the Closeness principle:

x and y are very similar in F -relevant respects if, and only if, Fx and Fy
are very similar in respect of truth.

Paoli uses this revised principle to argue that vague predicates can be better
interpreted in models that have more than one truth-degree for clear cases,
and more than one for clear non-cases. However, his proposal is restricted to the
algebraic models of Casari’s comparative logic [4]. We believe that such a restric-
tion is not flexible enough, because for example it excludes non-commutative or
non-associative interpretations of residuated conjunction, which are necessary in
some reasoning scenarios.

On the other hand, algebraic models of fuzzy logics can always be decomposed
into linearly ordered components (technically, by means of subdirect represen-
tation). This property allows us to account for the fact that many (maybe all)
vague predicates depend on underlying parameters that vary on linear scales.
Furthermore, if there are any vague predicates that cannot be explained from
a set of parameters that vary on a linear scale of degrees—that is, if there are
nonlinear nonmultidimensional vague predicates—they can still be modelled in a
degree-based approach if we enhance somewhat the logical framework and allow
for systems that do not enjoy completeness (and subdirect decomposition) w.r.t.
chains. Algebraic logic offers methods to build algebraic models for any non-
classical logic. In particular, if the logic has a reasonable implication connective,
it induces an order relation in its algebraic models [9,10] and, hence, such alge-
bras can be seen as (not necessarily linearly ordered) scales of degrees adequate
for modelling such predicates.
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Graded Precise Predicates: These predicates also admit models on algebras
of fuzzy logics, but with an important restriction of the evaluation functions to
account for the fact that there are no borderline cases. Take, for instance, the
predicate acute angle, represented by the unary predicate symbol A. Consider
again a model defined by a left-continuous uninorm with neutral element u < 1,
and let f be the interpretation of 0. Then, an admissible evaluation would be
given by:

‖Ax‖ =

{
(u − 1)x/90 + 1, if 0 ≤ x < 90

−fx/270 + 4f/3, if 90 ≤ x < 360

that is, a piecewise linear map that maps all acute angles to the interval of
designated elements [u, 1] (in particular it maps 0 to 1, because 0◦ is the most
acute angle), and maps all non-acute angles to the interval [0, f ] (in particular, it
maps 90◦ to f , because it is the least non-acute angle). Observe that no angle is
mapped to the interval (f, u) of intermediate truth-values. This will be a common
characteristic of all models for graded precise predicates, because, unlike vague
predicates, they have no borderline cases. Again, MFL offers a wealth of logical
systems to model a multitude of graded precise predicates depending on the
needs of each context.

This semantical treatment of graded precise predicates is inspired by Paoli’s
proposal [26,27] where the interpretations were given on algebraic models of
Casari’s comparative logic.

6 A General Program

We propose a research program of correct reasoning with graded properties,
done from the point of view of Logic and based on the following three layers of
analysis:

1. Natural language and natural reasoning scenarios: Interdisciplinary research
relating Logic to Cognitive Science, Psychology and Linguistics in order to
understand how correct reasoning is actually carried out in natural language
with graded properties.

2. Formal interpreted languages and artificial reasoning scenarios: The appli-
cation of tools of mathematical logic (level 3, below) to natural reasoning
scenarios (level 1, above) requires the introduction of a middle level, in which
the logical formalisms come with specific interpretations of graded proper-
ties in specific contexts. This has the potential for applications to Computer
Science that require handling graded predicates.

3. Formal abstract languages and mathematical logic: The systematic mathe-
matical study of non-classical logical systems with a graded semantics upon
which the study of the previous levels can be based.

The ideas sketched in the previous section illustrate how the mathematical
machinery developed in the study of non-classical logics can be used in modelling
graded predicates and reasoning with them. The study of such logical systems in
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layer three is done in a completely abstract way, as free mathematical research
unconstrained by the possible interpretations of the formal language.

However, by requiring specific behaviour of (part of) the formal language,
motivated by particular reasoning scenarios, we move to the second layer: for
example, studying logics with additional modalities aimed at modelling agents’
partial knowledge or belief, or their degrees of preference—or other specific frag-
ments of first-order or higher-order logics with good representational power and
complexity properties. The potential for applications is suggested by the fact
that some areas of Computer Science use several kinds of weighted notions,
i.e. graded properties, for example in valued constraint satisfaction problems,
weighted graphs, weighted automata, and so on. The application of MFL and
other algebraic logical tools to these areas is still very much under-explored.

Finally, the first layer can be seen as a proposal in the spirit of Stenning and
van Lambalgen’s endeavour to bring Logic back to the study of reasoning [35],
after years of evolving in separate directions. They have convincingly argued
that Logic is very much domain-dependent: valid forms of inference depend on
the domain of discourse. Accordingly, they claim that each instance of reasoning
requires two stages:

1. reasoning to an interpretation: in which one has to decide what are the appro-
priate formal tools for the particular reasoning scenario (language, models,
notion of consequence)

2. reasoning from an interpretation: in which, having established the previous
parameters, one can reason according to the chosen form of inference.

This approach is compatible with the kind of plurivaluationism defended in [33]
and with the idea, advocated in [1] and mentioned in Sect. 4 above, that we need
not pick one particular logic from the MFL family and then use it in every rea-
soning context that involves graded notions: there are differences among graded
notions (e.g. vague vs graded precise—and within the vague predicates, linear
vs nonlinear; etc.) and different contexts may well require different logics. In
general, our broader aim is to apply the full suite of MFL tools, the plurival-
uationism of [33], and the methodology proposed in [35] to reasoning scenarios
involving graded properties.
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